Skip to main content
Log in

Global Existence and Large Time Behavior of Strong Solutions to the 2-D Compressible Nematic Liquid Crystal Flows with Vacuum

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the strong solutions to the Cauchy problem of a simplified Ericksen-Leslie system of compressible nematic liquid crystals in two or three dimensions with vacuum as far field density. For strong solutions, some a priori decay rate (in large time) for the pressure, the spatial gradient of velocity field and the second spatial gradient of liquid crystal director field are obtained provided that the initial total energy is suitably small. Furthermore, with the help of the key decay rates, we establish the global existence and uniqueness of strong solutions (which may be of possibly large oscillations) in two spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh J., Lofstrom J.: Interpolation spaces, an introduction. Springer-Verlag, Berlin-Heidelberg-New York (1976)

    Book  MATH  Google Scholar 

  2. Cho Y., Choe H.J., Kim H.: Unique solvability of the initial boundary value problems for compressible viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choe H.J., Kim H.: Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ericksen J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  5. Ericksen J.L.: Hydrostatic theory of liquid crystal. Arch. Rational Mech. Anal. 9, 371–378 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Ericksen J.L.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392 (1987)

    MathSciNet  Google Scholar 

  7. Feireisl E.: Dynamics of viscous compressible fluids. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  8. Feireisl E., Novotny A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hardt R., Kinderlehrer D., Lin F.-H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Hineman L.J., Wang C.-Y.: Well-posedness of nematic liquid crystal flow in \({L^3_{uloc}({\mathbb{R}}^3)}\). Arch. Rational Mech. Anal. 105, 177–218 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hoff D.: Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hoff D.: Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Comm. Pure Appl. Math. 55(11), 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu X., Wu H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45, 2678–2699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang X.D., Li J., Xin Z.P.: Serrin type criterion for the three-dimensional compressible flows. SIAM J. Math. Anal. 43(4), 1872–1886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang X.D., Li J., Xin Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm. Pure Appl. Math. 65, 549–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang T., Wang C.-Y., Wen H.-Y.: Blowup criterion for compressible nematic liquid crystal flows in dimension three. Arch. Rational Mech. Anal. 204, 285–311 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Huang T., Wang C.-Y., Wen H.-Y.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252, 2222–2265 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jiang F., Jiang S., Wang D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265, 3369–3397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang F., Jiang S., Wang D.: Global Weak Solutions to the Equations of Compressible Flow of Nematic Liquid Crystals in Two Dimensions. Arch. Rational. Mech. Anal. 214, 403–451 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J., Liang Z.: On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum. J. Math. Pures Appl. 102, 640–671 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J., Xu, Z.-H., Zhang, J.-W.: Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows. http://arxiv.org/abs/1211.7140

  23. Li, J., Xin, Z.P.: Global well-posedness and decay asymptotic behavior of classical solution to the compressible Navier-Stokes equations with vacuum. http://arxiv.org/abs/1310.1673v1

  24. Li X., Wang D.: Global solution to the incompressible flow of liquid crystals. J. Differ. Equ. 252, 745–767 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lin F.-H.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Comm. Pure Appl. Math. 42, 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin F.-H., Lin J., Wang C.-Y.: Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal. 197, 297–336 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret. Cont. Dyn. Syst. 2, 1–23 (1996)

    Article  Google Scholar 

  29. Lions P.L.: Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  30. Lions P.L.: Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  31. Liu S., Yu H., Zhang J.: Global weak solutions of an initial boundary value problem for screw pinches in plasma physics. J. Differ. Equ. 254, 229–255 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu X.-G., Qing J.: Globally weak solutions to the flow of compressible liquid crystals system. Discret. Cont. Dyn. Syst. A 33, 757–788 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, (3) 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  35. Wang C.-Y.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Rational Mech. Anal. 200, 1–19 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wang D., Yu C.: Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch. Rational Mech. Anal. 204, 881–915 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wang, T.: A regularity condition of strong solutions to the two-dimensional equations of compressible nematic liquid crystal flows, preprint

  38. Zlotnik A.A.: Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations. Diff. Equ. 36, 701–716 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Wang.

Additional information

Communicated by G.-Q. Chen

The research was supported by the Fundamental Research Funds for the Central Universities No. BLX2015-27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T. Global Existence and Large Time Behavior of Strong Solutions to the 2-D Compressible Nematic Liquid Crystal Flows with Vacuum. J. Math. Fluid Mech. 18, 539–569 (2016). https://doi.org/10.1007/s00021-016-0251-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0251-z

Keywords

Navigation