Skip to main content
Log in

Regularizing properties of n-Laplace systems with antisymmetric potentials in Lorentz spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show continuity of solutions \(u \in W^{1,n}(B^n,\mathbb {R}^N)\) to the system

$$\begin{aligned} -\textrm{div} (|\nabla u|^{n-2} \nabla u) = \Omega \cdot |\nabla u|^{n-2} \nabla u \end{aligned}$$

when \(\Omega \) is an \(L^n\)-antisymmetric potential – and additionally satisfies a Lorentz-space assumption. To obtain our result we study a rotated n-Laplace system

$$\begin{aligned} -\textrm{div} (Q|\nabla u|^{n-2} \nabla u) = {\tilde{\Omega }} \cdot |\nabla u|^{n-2} \nabla u, \end{aligned}$$

where \(Q \in W^{1,n}(B^n,SO(N))\) is the Coulomb gauge which ensures improved Lorentz-space integrability of \({\tilde{\Omega }}\). Because of the matrix-term Q, this system does not fall directly into Kuusi–Mingione’s vectorial potential theory. However, we adapt ideas of their theory together with Iwaniec’ stability result to obtain \(L^{(n,\infty )}\)-estimates of the gradient of a solution which, by an iteration argument leads to the regularity of solutions. As a corollary of our argument we see that n-harmonic maps into manifolds are continuous if their gradient belongs to the Lorentz-space \(L^{(n,2)}\) – which is a trivial and optimal assumption if \(n=2\), and the weakest assumption to date for the regularity of critical n-harmonic maps, without any added differentiability assumption. We also prove a corresponding result for n-Laplace H-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

  2. Bojarski, B., Iwaniec, T.: Analytical foundations of the theory of quasiconformal mappings in \({\mathbb{R}}^n\). Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, 8(2):257–324, (1983)

  3. Byström, J.: Sharp constants for some inequalities connected to the \(p\)-Laplace operator. JIPAM. J. Inequal. Pure Appl. Math., 6(2):56, 8, (2005)

  4. Byun, S.-S., Ryu, S.: Global weighted estimates for the gradient of solutions to nonlinear elliptic equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 30(2):291–313, (2013)

  5. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9), 72(3):247–286, (1993)

  6. Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2), 103(3):611–635, (1976)

  7. Csató, G., Dacorogna, B., Kneuss, O.: The pullback equation for differential forms. Progress in Nonlinear Differential Equations and their Applications, vol. 83. Birkhäuser/Springer, New York (2012)

  8. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242(2), 973–1057 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duzaar, F., Fuchs, M.: Einige Bemerkungen über die Regularität von stationären Punkten gewisser geometrischer Variationsintegrale. Math. Nachr. 152, 39–47 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duzaar, F., Grotowski, J.F.: Existence and regularity for higher-dimensional \(H\)-systems. Duke Math. J. 101(3), 459–485 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duzaar, F., Mingione, G.: Local Lipschitz regularity for degenerate elliptic systems. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27(6):1361–1396, (2010)

  12. Firoozye, N.B.: \(n\)-Laplacian in \(\cal{H} ^1_{loc}\) does not lead to regularity. Proc. Amer. Math. Soc. 123(11), 3357–3360 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Fuchs, M.: The blow-up of \(p\)-harmonic maps. Manuscripta Math. 81(1–2), 89–94 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fusco, N., Kristensen, J., Leone, C., Verde, A.: On the H-systems in higher dimension. Nonlinear Anal., 177(part B):480–490, (2018)

  15. Goldstein, P., Zatorska-Goldstein, A.: Uhlenbeck’s Decomposition in Sobolev and Morrey-Sobolev Spaces. Results in Mathematics 73(2), 71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grafakos, L.: Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, third edition, (2014)

  17. Han, Q., Lin, F.: Elliptic Partial Differential Equations, volume 1 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, second edition, (2011)

  18. Hardt, R., Lin, F.-H.: Mappings minimizing the L\(\hat{{\rm p}}\) norm of the gradient. Communications on Pure and Applied Mathematics 40(5), 555–588 (1987)

  19. F. Hélein. Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math., 311(9):519–524, 1990

  20. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math., 312(8):591–596, (1991)

  21. Iwaniec, T., Martin, G.: Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001)

    MATH  Google Scholar 

  22. Iwaniec, T., Onninen, J.: Continuity estimates for \(n\)-harmonic equations. Indiana Univ. Math. J. 56(2), 805–824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Iwaniec, T., Sbordone, C.: Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math. 74, 183–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iwaniec, T., Scott, C., Stroffolini, B.: Nonlinear Hodge theory on manifolds with boundary. Ann. Mat. Pura Appl. 4(177), 37–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kolasiński, S.: Regularity of weak solutions of \(n\)-dimensional \(H\)-systems. Differential Integral Equations 23(11–12), 1073–1090 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Kuusi, T., Mingione, G.: A nonlinear Stein theorem. Calc. Var. Partial Differential Equations 51(1–2), 45–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuusi, T., Mingione, G.: Vectorial nonlinear potential theory. J. Eur. Math. Soc. (JEMS) 20(4), 929–1004 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lenzmann, E., Schikorra, A.: Sharp commutator estimates via harmonic extensions. Nonlinear Anal., 193:111375, 37, (2020)

  30. Miśkiewicz, M., Petraszczuk, B., Strzelecki, P.: Regularity for solutions of H-systems and n-harmonic maps with n/2 square integrable derivatives. arXiv e-prints, page arXiv:2206.13833, (2022)

  31. Mou, L., Yang, P.: Multiple solutions and regularity of \(H\)-systems. Indiana Univ. Math. J. 45(4), 1193–1222 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mou, L., Yang, P.: Regularity for \(n\)-harmonic maps. J. Geom. Anal. 6(1), 91–112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pick, L., Kufner, A., John, O., Fucik, S.: Function Spaces, 1. De Gruyter, Berlin, Boston (2013)

    MATH  Google Scholar 

  34. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rivière, T.: The role of integrability by compensation in conformal geometric analysis. In Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons and computer imaging, volume 22 of Sémin. Congr., pages 93–127. Soc. Math. France, Paris, (2011)

  36. Rivière, T., Struwe, M.: Partial regularity for harmonic maps and related problems. Comm. Pure Appl. Math. 61(4), 451–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rochberg, R., Weiss, G.: Derivatives of analytic families of Banach spaces. Ann. of Math. (2), 118(2):315–347, (1983)

  38. Schikorra, A.: A remark on gauge transformations and the moving frame method. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27(2):503–515, (2010)

  39. Schikorra, A.: A note on regularity for the \(n\)-dimensional \(H\)-system assuming logarithmic higher integrability. Analysis (Berlin) 33(3), 219–234 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Schikorra, A., Strzelecki, P.: Invitation to \(H\)-systems in higher dimensions: known results, new facts, and related open problems. EMS Surv. Math. Sci. 4(1), 21–42 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shatah, J.: Weak solutions and development of singularities of the \({\rm SU}(2)\)\(\sigma \)-model. Comm. Pure Appl. Math. 41(4), 459–469 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shatah, J., Struwe, M.: The Cauchy problem for wave maps. Int. Math. Res. Not. 11, 555–571 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Strzelecki, P.: Regularity of \(p\)-harmonic maps from the \(p\)-dimensional ball into a sphere. Manuscripta Math. 82(3–4), 407–415 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Strzelecki, P.: A new proof of regularity of weak solutions of the \(H\)-surface equation. Calc. Var. Partial Differential Equations 16(3), 227–242 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takeuchi, H.: Some conformal properties of \(p\)-harmonic maps and a regularity for sphere-valued \(p\)-harmonic maps. J. Math. Soc. Japan 46(2), 217–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. Uhlenbeck, K.K.: Connections with \(L^{p}\) bounds on curvature. Comm. Math. Phys. 83(1), 31–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, C.: Regularity of high-dimensional \(H\)-systems. Nonlinear Anal., 38(6, Ser. A: Theory Methods):675–686, (1999)

Download references

Acknowledgements

A substantial part of this work was carried out while D.M. and A.S. were visiting University of Bielefeld. We like to express our gratitude to the University for its hospitality. D.M.’s visit was partially funded through SFB 1283 and ANR BLADE-JC ANR-18-CE40-002. D.M. thanks Paul Laurain for initiating him to the subject and for his constant support and advice. A.S. is an Alexander-von-Humboldt Fellow. A.S. is funded by NSF Career DMS-2044898.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Martino.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martino, D., Schikorra, A. Regularizing properties of n-Laplace systems with antisymmetric potentials in Lorentz spaces. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02727-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02727-2

Navigation