Skip to main content
Log in

Codimension 2 transfer of higher index invariants

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the higher index theory of codimension 2 submanifolds originated by Gromov–Lawson and Hanke–Pape–Schick. The first main result is to construct the ‘codimension 2 transfer’ map from the Higson–Roe analytic surgery exact sequence of a manifold M to that of its codimension 2 submanifold N under some assumptions on homotopy groups. This map sends the primary and secondary higher index invariants of M to those of N. The second is to establish that the codimension 2 transfer map is adjoint to the co-transfer map in cyclic cohomology, defined by the cup product with a group cocycle. This relates the Connes–Moscovici higher index pairing and Lott’s higher \(\rho \)-number of M with those of N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, S.: Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups. Topology 33(4), 765–783 (1994)

    MathSciNet  Google Scholar 

  2. Angel, E.: Cyclic cocycles on twisted convolution algebras. Commun. Math. Phys. 317(1), 157–203 (2013)

    ADS  MathSciNet  Google Scholar 

  3. Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^\ast \)-modules hilbertiens: comptes Rendus des Séances de l’Académie des Sciences. Sér. I. Math. 296(21), 875–878 (1983)

    MathSciNet  Google Scholar 

  4. Baum, P. Douglas, R.G.: \(K\)-homology and index theory, (1982), Operator algebras and applications, Part I (Kingston, Ont., 1980). In: Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, pp. 117– 173

  5. Baum, P., Connes, A., Higson, N.: Classifying Space for Proper Actions and \(K\)-Theory of Group \(C^\ast \)-Algebras, (1994), \(C^\ast \)-Algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, pp. 240– 291

  6. Baum, P., Higson, N., Schick, T.: On the equivalence of geometric and analytic \(K\)-homology. Pure Appl. Math. Q. 3(1, part 3), 1–24 (2007)

    MathSciNet  Google Scholar 

  7. Blackadar, B.: \(K\)-theory for operator algebras, Second, vol. 5. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (1998)

  8. Booß-Bavnbek, B., Wojciechowski, K.P.: Elliptic Boundary Problems for Dirac Operators, Mathematics: Theory & Applications. Birkhäuser, Boston (1993)

    Google Scholar 

  9. Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, New York (1994)

    Google Scholar 

  10. Brown, N.P., Ozawa, N.: C*-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, American Mathematical Society, Providence, p. 88 (2008)

  11. Burghelea, D.: The cyclic homology of the group rings. Comment. Math. Helvetici 60(3), 354–365 (1985)

    MathSciNet  Google Scholar 

  12. Chang, S., Weinberger, S., Yu, G.: Positive scalar curvature and a new index theory for noncompact manifolds. J. Geometry Phys. 149, 103575, 22 (2020)

  13. Chen, X., Wang, J., Xie, Z., Yu, G.: Delocalized eta invariants, cyclic cohomology and higher rho invariants (2019). arXiv:1901.02378

  14. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego (1994)

    Google Scholar 

  15. Connes, A., Moscovici, H.: Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology 29(3), 345–388 (1990)

    MathSciNet  Google Scholar 

  16. Cuntz, J.: Cyclic Theory, Bivariant \(K\)-Theory and the Bivariant Chern-Connes Character, Cyclic Homology in Non-commutative Geometry, Encyclopedia Math. Sci., vol. 121. Springer, Berlin, pp. 1– 71 (2004)

  17. Daele, V.A.: K-theory for graded Banach algebras I. Q. J. Math. 39(154), 185–199 (1988)

    MathSciNet  Google Scholar 

  18. Deeley, R.J., Goffeng, M.: Realizing the analytic surgery group of Higson and Roe geometrically, part I: The geometric model. J. Homotopy Relat. Struct. 12(1), 109–142 (2017)

    MathSciNet  Google Scholar 

  19. Gong, G., Qin, W., Yu, G.: Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math. 621, 159–189 (2008)

    MathSciNet  Google Scholar 

  20. Gromov, M., Lawson, H.B., Jr.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, (1983). Institut des Hautes Études Scientifiques. Publications Mathématiques, (58), 83–196 (1984)

  21. Guentner, E., Kaminker, J.: Exactness and the Novikov conjecture. Topology 41(2), 411–418 (2002)

    MathSciNet  Google Scholar 

  22. Guo, H., Xie, Z., Yu, G.: A Lichnerowicz vanishing theorem for the maximal roe algebra. Math. Ann. (2022)

  23. Hanke, B., Pape, D., Schick, T.: Codimension two index obstructions to positive scalar curvature: Université de Grenoble. Ann. l’Inst. Fourier 65(6), 2681–2710 (2015)

    Google Scholar 

  24. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  25. Higson, N., Roe, J.: Analytic \(K\)-Homology. Oxford University Press, Oxford, Oxford Mathematical Monographs (2000)

  26. Higson, N., Roe, J.: Amenable group actions and the Novikov conjecture. J. für die Reine Angew. Math. 519, 143–153 (2000)

    MathSciNet  Google Scholar 

  27. Higson, N., Roe, J.: Mapping surgery to analysis. I. Analytic signatures, \(K\)-Theory. Interdiscip. J. Dev. Appl. Influence \(K\)-Theory Math. Sci. 33(4), 277– 299 (2005)

  28. Higson, N., Roe, J.: Mapping surgery to analysis. II. Geometric signatures, \(K\)-Theory. Interdiscip. J. Dev. Appl. Influence \(K\)-Theory Math. Sci. 33(4), 301– 324 (2005)

  29. Higson, N., Roe, J.: Mapping surgery to analysis. III. Exact sequences, \(K\)-theory. Interdiscip. J. Dev. Appl. Influence \(K\)-Theory Math. Sci. 33(4), 325– 346 (2005)

  30. Higson, N., Roe, J., Yu, G.: A coarse Mayer–Vietoris principle. Math. Proc. Camb. Philos. Soc. 114(1), 85–97 (1993)

    MathSciNet  Google Scholar 

  31. Higson, N., Schick, T., Xie, Z.: C-algebraic higher signatures and an invariance theorem in codimension two. Geom. Topol. 22(6), 3671–3699 (2018)

    MathSciNet  Google Scholar 

  32. Hilsum, M., Skandalis, G.: Invariance par homotopie de la signature à coefficients dans un fibré presque plat. J. Reine Angew. Math. 423, 73–99 (1992)

    MathSciNet  Google Scholar 

  33. Jolissaint, P.: K-theory of reduced C*-algebras and rapidly decreasing functions on groups. K-Theory 2(6), 723–735 (1989)

    MathSciNet  Google Scholar 

  34. Karoubi, M.: Homologie cyclique et \(K\)-théorie. Astérisque 149, 147 (1987)

  35. Kasparov, G.G.: The operator \(K\)-functor and extensions of \(C^\ast \)-algebras, Izvestiya Akademii Nauk SSSR. Seriya Mat. 44(3), 571–636, 719 (1980)

    MathSciNet  Google Scholar 

  36. Kasparov, G.G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)

    ADS  MathSciNet  Google Scholar 

  37. Kubota, Y.: The relative Mishchenko–Fomenko higher index and almost flat bundles. I. The relative Mishchenko–Fomenko index. J. Noncommutative Geom. 14(3), 1209–1244 (2020)

    MathSciNet  Google Scholar 

  38. Kubota, Y., Schick, T.: The Gromov–Lawson codimension 2 obstruction to positive scalar curvature and the C*-index. Geom. Topol. 25, 949–960 (2020)

    MathSciNet  Google Scholar 

  39. Lafforgue, V.: A proof of property (RD) for cocompact lattices of \(SL (3,{\mathbb{R} })\) and \(SL (3,{\mathbb{C} })\). J. Lie Theory 10(2), 255–267 (2000)

    MathSciNet  Google Scholar 

  40. Lafforgue, V.: K-théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes. Invent. Math. 149(1), 1–95 (2002)

    ADS  MathSciNet  Google Scholar 

  41. Loday, J.-L.: Cyclic Homology, Second, Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, p. 301 (1998)

  42. Lott, J.: Higher eta-invariants, \(K\)-theory. Interdiscip. J. Dev. Appl. Influence \(K\)-Theory Math. Sci. 6(3), 191–233 (1992)

  43. Lott, J.: Superconnections and higher index theory. Geom. Funct. Anal. 2(4), 421–454 (1992)

    MathSciNet  Google Scholar 

  44. Lott, J.: Delocalized \(L^2\)-invariants. J. Funct. Anal. 169(1), 1–31 (1999)

    MathSciNet  Google Scholar 

  45. McCleary, J.: User’s Guide to Spectral Sequences. Publish or Perish Inc, Wilmington, DE, Mathematics Lecture Series, p. 12 (1985)

  46. Nistor, V.: Group cohomology and the cyclic cohomology of crossed products. Invent. Math. 99(2), 411–424 (1990)

    ADS  MathSciNet  Google Scholar 

  47. Nitsche, M.: New topological and index-theoretical methods to study the geometry of manifolds. Ph.D. thesis, University of Göttingen (2018)

  48. Nitsche, M., Schick, T., Zeidler, R.: Transfer maps in generalized group homology via submanifolds. Doc. Math. 26, 947–979 (2021)

    MathSciNet  Google Scholar 

  49. Oyono-Oyono, H., Yu, G.: \(K\)-theory for the maximal Roe algebra of certain expanders. J. Funct. Anal. 257(10), 3239–3292 (2009)

    MathSciNet  Google Scholar 

  50. Ozawa, N.: Amenable actions and exactness for discrete groups. Compt. Rend. l’Acad. Sci. 330(8), 691–695 (2000)

    MathSciNet  Google Scholar 

  51. Packer, J.A., Raeburn, I.: Twisted crossed products of \(C^*\)-algebras. Math. Proc. Camb. Philos. Soc. 106(2), 293–311 (1989)

    MathSciNet  Google Scholar 

  52. Piazza, P., Schick, T.: Bordism, rho-invariants and the Baum–Connes conjecture. J. Noncommutative Geom. 1(1), 27–111 (2007)

    MathSciNet  Google Scholar 

  53. Piazza, P., Schick, T.: Rho-classes, index theory and Stolz’ positive scalar curvature sequence. J. Topol. 7(4), 965–1004 (2014)

    MathSciNet  Google Scholar 

  54. Piazza, P., Schick, T.: The surgery exact sequence, K-theory and the signature operator. Ann. K-Theory 1(2), 109–154 (2016)

    MathSciNet  Google Scholar 

  55. Piazza, P., Schick, T., Zenobi, V.F.: Mapping analytic surgery to homology, higher rho numbers and metrics of positive scalar curvature, to appear in Memoirs of the American Mathematical Society (2019)

  56. Puschnigg, M.: New holomorphically closed subalgebras of \(C^*\)-algebras of hyperbolic groups. Geom. Funct. Anal. 20(1), 243–259 (2010)

    MathSciNet  Google Scholar 

  57. Reis, R.M.G., Szabo, R.J., Valentino, A.: KO-homology and type I string theory. Rev. Math. Phys. 21(9), 1091–1143 (2009)

    MathSciNet  Google Scholar 

  58. Roe, J.: Partitioning Noncompact Manifolds and the Dual Toeplitz Problem, Operator Algebras and Applications, Vol. 1, London Math. Soc. Lecture Note Ser., 135. Cambridge Univ. Press, Cambridge, pp. 187– 228 (1988)

  59. Roe, J.: Index theory, coarse geometry, and topology of manifolds. In: CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, p. 90. DC; by the American Mathematical Society, Providence (1996)

  60. Rosenberg, J.: \(C^\ast \)-algebras, positive scalar curvature, and the Novikov conjecture (1983). Inst. Hautes Études Sci.. Publ. Math. 58, 197–212 (1984)

  61. Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for equivariant K-theory and KK-theory. Mem. Am. Math. Soc. 62(348), vi+95 (1986)

  62. Rosenberg, J., Stolz, S.: A “Stable” Version of the Gromov-Lawson Conjecture. The Čech Centennial (Boston, MA, 1993), Contemp. Math., 181, Amer. Math. Soc., Providence, pp. 405–418 (1995)

  63. Rosenberg, J., Weinberger, S.: The signature operator at 2. Topology 45(1), 47–63 (2006)

    MathSciNet  Google Scholar 

  64. Schick, T.: A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture. Topology 37(6), 1165–1168 (1998)

    MathSciNet  Google Scholar 

  65. Siegel, P.: Homological Calculations with the Analytic Structure Group. ProQuest LLC, Ann Arbor (2012)

    Google Scholar 

  66. Tu, J.-L.: Groupoid cohomology and extensions. Trans. Am. Math. Soc. 358(11), 4721–4747 (2006). (electronic)

    MathSciNet  Google Scholar 

  67. Weinberger, S., Yu, G., Xie, Z.: Additivity of higher rho invariants and nonrigidity of topological manifold. Commun. Pure Appl. Math. https://doi.org/10.1002/cpa.21962 (2020)

  68. Xie, Z., Yu, G.: A relative higher index theorem, diffeomorphisms and positive scalar curvature. Adv. Math. 250, 35–73 (2014)

    MathSciNet  Google Scholar 

  69. Xie, Z., Yu, G.: Delocalized eta invariants, algebraicity, and k-theory of group C*-Algebras, International Mathematics Research Notices (2019–08). https://academic.oup.com/imrn/advance-article-pdf/doi/10.1093/imrn/rnz170/29159332/rnz170.pdf

  70. Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    ADS  MathSciNet  Google Scholar 

  71. Zeidler, R.: Positive scalar curvature and product formulas for secondary index invariants. J. Topol. 9(3), 687–724 (2016)

    MathSciNet  Google Scholar 

  72. Zenobi, V.F.: The adiabatic groupoid and the Higson-Roe exact sequence. J. Noncommutative Geom. 15(3), 797–827 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thank the anonymous referee for his/her careful reading of the paper and many comments that are helpful in improving the quality of the paper. This work was supported by RIKEN iTHEMS and JSPS KAKENHI Grant Numbers 19K14544, JPMJCR19T2, 17H06461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Kubota.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Secondary external product via pseudo-local C*-algebra

In this appendix, we define the secondary external product in coarse C*-algebra K-theory, the product of the analytic structure set and the K-homology group, in terms of the pseudo-local coarse C*-algebra \(D^*(\widetilde{M})^\Gamma \), instead of Yu’s localization algebra studied in [71]. The construction is inspired from the definition of the Kasparov product [35].

Remark A.1

We use the K-theory of \(\mathbb {Z}_2\)-graded C*-algebras by Van Daele [17] for coarse C*-algebras with Clifford algebra symmetry. In general, for a \(\mathbb {Z}_2\)-graded (Real) C*-algebra A, its (Real) K-theory \({{\,\mathrm{\textrm{K}}\,}}_1(A)\) is defined to be the set of homotopy classes of (Real) odd self-adjoint unitaries on A. We define the coarse C*-algebras \(C^*_{p,q}(\widetilde{M})^\Gamma \), \(D^*_{p,q}(\widetilde{M})^\Gamma \), \(Q^*_{p,q}(\widetilde{M})^\Gamma \) consisting of operators which is graded-commutative with the action of Clifford algebras. Then \({{\,\mathrm{\textrm{K}}\,}}_1(C^*_{p,q}(\widetilde{M})^\Gamma ) \cong {{\,\mathrm{\textrm{K}}\,}}_{1-p+q}(C^*(\widetilde{M})^\Gamma )\) holds, and the same is also true for \(D^*\) and \(Q^*\).

For a spin manifold M with \(n:=\dim M =8m - q\) (where \(q = 0, \ldots , 7\)), the Dirac operator on the spinor bundle of \(\textrm{Spin}(M) \times _{\textrm{Spin}_n} \Delta _{8m}\) is equipped with an additional symmetry of \({ C}\ell _{0,q}\), and hence determines a K-theory class (cf. 4.8). Similarly, the signature operator on an odd-dimensional manifold determines a complex K-theory class \([\chi (D_M^\textrm{sgn})] \in {{\,\mathrm{\textrm{K}}\,}}_1(Q^*_{0,1}(\widetilde{M})^\Gamma )\) (we refer to [63], Definition and Notation 1.1).

Definition A.2

The external product

$$\begin{aligned} {\cdot } \boxtimes {\cdot } :{{\,\mathrm{\textrm{K}}\,}}_1(D^*_{p_1,q_1}(M_1)^{\Gamma _1}) \otimes {{\,\mathrm{\textrm{K}}\,}}_1(Q^*_{p_2,q_2}(\widetilde{M_2})^{\Gamma _2}) \rightarrow {{\,\mathrm{\textrm{K}}\,}}_1(D^*_{p,q}(\widetilde{M}_1 \times \widetilde{M}_2)^{\Gamma _1 \times \Gamma _2}), \end{aligned}$$

where \(p=p_1+p_2\) and \(q=q_1+q_2\), is defined as

$$\begin{aligned}{}[F_1] \boxtimes [F_2]:= [ f(F_1 \hat{\otimes } 1 + (1-F_1^2) \hat{\otimes } F_2) ], \end{aligned}$$

where \(f(x):=x/|x|\).

This definition makes sense because the operator \(F_1 \hat{\otimes } 1 + (1-F_1^2) \hat{\otimes } F_2\) is invertible in \(D^*_{p+q}(\widetilde{M}_1 \times \widetilde{M}_2)^{\Gamma _1 \times \Gamma _2}\). Indeed, this is seen as

$$\begin{aligned} (F_1 \hat{\otimes } 1 + (1-F_1^2) \hat{\otimes } F_2)^2 = F_1 ^2 \hat{\otimes } 1 + (1-F_1^2) \hat{\otimes } F_2^2 \ge F_1^2 \hat{\otimes } 1 >0. \end{aligned}$$

This also shows that \([F_1] \boxtimes [F_2]\) is well-defined independent of the choice of representatives \(F_1\) and \(F_2\).

Lemma A.3

For \(i=1,2\), let \(D_i\) be a \(\Gamma _i\)-invariant \(\mathbb {Z}_2\)-graded elliptic first-order differential operator on \(M_i\) anticommuting with a \(\mathbb {Z}_2\)-graded representation of \({ C}\ell _{p_i,q_i}\). Moreover, we assume that \(D_1\) is invertible. Then we have

$$\begin{aligned}{}[\chi (D_1)] \boxtimes [\chi (D_2) ] = [\chi (D_1 \hat{\otimes } 1 + 1 \hat{\otimes } D_2)]. \end{aligned}$$

Proof

This is a standard argument in Kasparov theory. We just refer the reader to [3] or [7], Proposition 18.10.1. \(\square \)

Lemma A.3 shows that

where \(\epsilon = 1\) if both \(\dim M_1\) and \(\dim M_2\) are odd, and otherwise \(\epsilon = 0\). In particular, when \(M_2=\mathbb {R}\), these equalities means that

$$\begin{aligned} \rho (g_{N\times \mathbb {R}})&= \rho (g_N ) \boxtimes [\mathbb {R}] ,\\ \rho _\textrm{sgn}(f_{N \times \mathbb {R}} )&= 2^{\epsilon } \rho _\textrm{sgn}(f_N ) \boxtimes [\mathbb {R}]_\textrm{sgn}, \end{aligned}$$

where \(\epsilon \) is 0 or 1 if \(\dim N\) is even or odd. Therefore, the coarse Mayer–Vietoris boundary map

sends the higher \(\rho \)-invariants of \(N \times \mathbb {R}\) as

$$\begin{aligned} \partial _{\textrm{MV}} (\rho (g_{N \times \mathbb {R}}))&= \partial _{\textrm{MV}} (\rho (g_N ) \boxtimes [\mathbb {R}]) = \rho (g_N) \boxtimes \partial _{\textrm{MV}} [\mathbb {R}] = \rho (g_N), \\ \partial _{\textrm{MV}} (\rho _\textrm{sgn}(f_{N \times \mathbb {R}}))&= \partial _{\textrm{MV}} (2^\epsilon \rho (f_N ) \boxtimes [\mathbb {R}]) = 2^\epsilon \rho (f_N) \boxtimes \partial _{\textrm{MV}} [\mathbb {R}] = 2^\epsilon \rho (g_N). \end{aligned}$$

This completes the proof of Lemma 4.12 (3), (4).

Appendix B: Cyclic homology of a crossed product and group homology

In this appendix, we give a more detailed discussion on the proof of Lemma 5.6. We show that the exact sequence of cyclic chain complexes

$$\begin{aligned} 0 \rightarrow \ker \theta \rightarrow {{\,\mathrm{\textrm{CC}}\,}}_*(C(\mathcal {B}, \mathcal {K}_\sigma ) \rtimes _\textrm{alg}\Gamma )[\![v^{\pm 1}]\!] \xrightarrow {\theta } {{\,\mathrm{\textrm{CC}}\,}}_*(\mathbb {C}[\Gamma ])[\![v^{\pm 1}]\!] \rightarrow 0 \end{aligned}$$
(B.1)

is quasi-isomorphic to the exact sequence of chain complexes

$$\begin{aligned} 0 \rightarrow C_\bullet (\Gamma , \Omega ^\bullet _0(\mathcal {B}_0 ) )[\![v^{\pm 1}]\!]&\rightarrow C_\bullet (\Gamma , \Omega ^\bullet (\mathcal {B}) )[\![v^{\pm 1}]\!] \rightarrow C_\bullet (\Gamma , \mathbb {C})[\![v^{\pm 1}]\!] \rightarrow 0 \end{aligned}$$
(B.2)

given in (5.7) (note that the excision property of cyclic homology states that the inclusion \({{\,\mathrm{\textrm{CC}}\,}}_*(C_0(\mathcal {B}_0, \mathcal {K}_\sigma ) \rtimes _\textrm{alg}\Gamma )[\![v^{\pm 1}]\!] \rightarrow \ker \theta \) is quasi-isomorphic). To this end, we construct maps from (B.1) and (B.2) to another exact sequence of complexes

$$\begin{aligned} 0 \rightarrow \underline{\Omega }{}_0(\mathcal {B}_0 \rtimes \Gamma )[u^{\pm 1}]' \rightarrow \underline{\Omega }(\mathcal {B}\rtimes \Gamma )[u^{\pm 1}]' \rightarrow \Omega (\textrm{pt}\rtimes \Gamma )[u^{\pm 1}]' \rightarrow 0. \end{aligned}$$
(B.3)

Here, for a vector space V, \(V'\) stands for the algebraic dual vector space \({{\,\mathrm{\textrm{Hom}}\,}}(V,\mathbb {C})\).

We start with the definition of (B.3). Following ([2], Subsection 2.3), let \(\underline{\Omega }{}_\bullet (\mathcal {B})\) denotes the dual cocomplex of \(\Omega ^\bullet (\mathcal {B})\), which is equipped with the degree \(-1\) differential \(d_{\textrm{dR}}\). we define the \(\mathbb {Z}\)-graded vector space \(\underline{\Omega }^\bullet (\mathcal {B}\rtimes \Gamma )[u^{\pm 1}]\), where u is a degree 2 formal symbol, as

$$\begin{aligned}&\underline{\Omega }^{r,s} (\mathcal {B}\rtimes \Gamma ) \\&:= \Big \{ (\omega _{(n)}) \in \prod _{n \ge 0} \underline{\Omega }^r (\mathcal {B}\times \Gamma ^n) \otimes \Omega ^s(\Delta ^n) \mid (\textrm{id}\times \delta ^i )^*\omega _{(n)} = (\delta _i \times \textrm{id})^* \omega _{(n-1)} \Big \}_{\textstyle ,} \end{aligned}$$

where \(\delta _i :\mathcal {B}\times \Gamma ^{n} \rightarrow \mathcal {B}\times \Gamma ^{n-1}\) and \(\delta ^i :\Delta ^{n-1} \rightarrow \Delta ^{n}\) denote the i-th face maps. We write \(\omega (g_1, \ldots , g_n)\) for the restriction of \(\omega \) to \(\mathcal {B}\times \{ g_1, \ldots , g_n \} \times \Delta ^n\). The twisted simplicial de Rham differential is defined as \(d_\Theta := ud_{\textrm{dR}} + d_\Delta + \Theta \), where \(d_\Delta \) is the de Rham differential on \(\Omega ^s(\Delta ^n)\) and \(\Theta \in \underline{\Omega }^{1,2}(\mathcal {B}\rtimes \Gamma )\) is the differential form

$$\begin{aligned} \Theta (g_1, \ldots , g_n):= \sum _{1 \le i \le j \le k} 2\alpha (g_1 \cdots g_i, g_{i+1} \cdots g_j)dt_idt_j, \end{aligned}$$

where \(\alpha (g,h) = \sigma (g,h)^{-1}d\sigma (g,h) \in \Omega ^1(\mathcal {B})\). The dual of the short exact sequence \(0 \rightarrow \Omega _0^\bullet (\mathcal {B}_0) \rightarrow \Omega ^\bullet (\mathcal {B}) \rightarrow \mathbb {C}\rightarrow 0\) gives rise to

$$\begin{aligned} 0 \rightarrow \underline{\Omega }^\bullet (\textrm{pt}\rtimes \Gamma )[u^{\pm 1}] \rightarrow \underline{\Omega }(\mathcal {B}\rtimes \Gamma )[u^{\pm 1}] \rightarrow \underline{\Omega }{}_0^\bullet (\mathcal {B}_0 \rtimes \Gamma )[u^{\pm 1}] \rightarrow 0, \end{aligned}$$

which is dual to (B.3).

Remark B.4

We review the Packer–Raeburn construction ([51], Theorem 3.4). Let \(\mathcal {H}_\sigma \) be the Hilbert bundle \(\mathcal {B}\times \ell ^2(\Gamma )\), on which \(\Gamma \) acts as

$$\begin{aligned} u_g \xi := ((\gamma _g \otimes \lambda _g) \circ v(g)) \xi \end{aligned}$$

for any \(\xi \in C(\mathcal {B}, \mathcal {H}_\sigma )\), where

$$\begin{aligned} v(g):= \mathop {\textrm{diag}}(\sigma (g,h)^*)_{h \in \Gamma } \in C(\mathcal {B}, \mathbb {B}(\ell ^2\Gamma )). \end{aligned}$$

Let \(\mathcal {K}_\sigma \) denote the associated compact operator algebra bundle on \(\mathcal {B}\). Then, the relation \(u_gu_h = \sigma (g,h,x)^* u_{gh}\) holds, i.e., \(\{ u_g\} \) is a \(\sigma ^*\)-twisted unitary representation of the groupoid \(\mathcal {B}\rtimes \Gamma \). This implements a twisted \(\Gamma \)-equivariant Morita equivalence between \((C(\mathcal {B}), \sigma )\) and the untwisted \(\Gamma \)-C*-algebra \(C(\mathcal {B}, \mathcal {K}_\sigma )\). In particular, \(C(\mathcal {B}) \rtimes _\sigma \Gamma \) is Morita equivalent to \(C(\mathcal {B}, \mathcal {K}_\sigma ) \rtimes \Gamma \).

Lemma B.5

There are homomorphisms from the exact sequences (B.1) and (B.2) to (B.3), which induces isomorphism of homology.

Proof

The pairing \(\langle \cdot , \cdot \rangle \) of \( C_\bullet (\Gamma , \Omega ^\bullet (\mathcal {B}))[\![v ^{\pm 1} ]\!]\) and \(\underline{\Omega } (\mathcal {B}\rtimes \Gamma )^\bullet [u^{\pm 1}] \) is defined by

$$\begin{aligned} \left\langle \sum _{g_1, \ldots , g_m} \xi _{g_1, \ldots , g_m} v^k, (\omega _{(n)}) u^l \right\rangle := \delta _{k,-l} \sum _{g_1, \ldots , g_m} \int _{\mathcal {B}\times \Delta ^n} \xi _{g_1, \ldots , g_m} \wedge \omega _{g_1, \ldots , g_m}. \end{aligned}$$

This pairing satisfy \(\langle \xi , ud _{\textrm{dR}}\omega \rangle = \langle vd_{\textrm{dR}} \xi , \omega \rangle \), \(\langle \xi , d_{\Delta } \omega \rangle = \langle \delta _\Gamma \xi , \omega \rangle \) and \(\langle \xi , \Theta \omega \rangle = \langle \Theta \xi , \omega \rangle \), and that the following diagram commutes;

Moreover the left and the right vertical maps induce the isomorphism of homology. Indeed, the homology groups of two complexes at the left (resp. the right) are both isomorphic to the group homology \(H_{[*-1]}(\pi ; \mathbb {C})\) (resp. \(H_{[*]}(\Gamma , \mathbb {C})\)).

In [2], Angel constructed a pairing of (B.1) and (B.3) as a variation of the JLO character. Although the space \(\mathcal {B}\) is not a manifold, the same definition also works in our setting. Moreover, due to the 1-dimensionality of \(\mathcal {B}\), the construction is partly simplified.

The simplicial connection and curvature forms of \(\mathcal {H}_\sigma \) is defined by gluing the connections and curvature forms

$$\begin{aligned} \nabla _u^k(g_1, \ldots , g_k)&:= d_{\textrm{dR}} + u^{-1}d_\Delta + t_1 A(g_1) + t_2 A(g_1g_2) + \cdots + t_k A(g_1 \cdots g_k), \\ \vartheta _{(k)}(g_1,\ldots ,g_k)&:= \sum _{1 \le i \le j \le k} \alpha (g_1 \cdots g_i, g_{i+1} \cdots g_j)(t_idt_j -t_jdt_i). \end{aligned}$$

The JLO homomorphism

$$\begin{aligned} \mathcal {T}_{\textrm{JLO}} :(C_\bullet (\Gamma , {{\,\mathrm{\textrm{CC}}\,}}_\bullet (C^\infty (\mathcal {B}, \mathcal {K}_\sigma )))[\![v^{\pm 1}]\!], b + uB+\delta _\Gamma ') \rightarrow (\underline{\Omega }^\bullet (\mathcal {B}\rtimes \Gamma )[u^{\pm 1}]', d_\Theta ) \end{aligned}$$

is defined as

$$\begin{aligned}&\langle (\omega _{(n)}) u^k, \mathcal {T}_{\textrm{JLO}}(((\tilde{a}_0 \otimes \cdots \otimes a_p),(g_1, \ldots , g_q))v^l) \rangle \\&\quad = \delta _{k,l} \int _{\mathcal {B}\times \Delta ^q} \omega _{g_1, \cdots , g_q} \wedge \int _{\Delta ^p} \textrm{Tr}(\tilde{a_0}e^{s_0 \vartheta _{(q)}}(\nabla _u^q a_1)e^{s_1 \vartheta _{(q)}} \cdots e^{s_p \vartheta _{(q)} } (\nabla _u^q a_q)) ds_1 \cdots ds_q. \end{aligned}$$

It is shown in the same way as [2, Theorem 5.5] that it is a chain map.

Moreover, in [2, Subsection 5.3] (we also refer to [46, 2.5]), a quasi-isomorphism

$$\begin{aligned} \Psi _A :(C_\bullet (\Gamma , {{\,\mathrm{\textrm{CC}}\,}}_\bullet (A))[u^{\pm 1}], b + uB + \delta _\Gamma ' ) \rightarrow ({{\,\mathrm{\textrm{CC}}\,}}_\bullet (A \rtimes _\textrm{alg}\Gamma )[u^{\pm 1}], b + uB) \end{aligned}$$

is constructed for any \(\Gamma \)-algebra A. By the construction, this \(\Psi _A\) is functorial. Therefore, \(\Psi _A \circ \mathcal {T}_{\textrm{JLO}}\) gives rise to a commutative diagram

Since the left and the right vertical maps are both isomorphic, this finishes the proof of the lemma. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, Y. Codimension 2 transfer of higher index invariants. Math. Ann. 388, 2931–2989 (2024). https://doi.org/10.1007/s00208-023-02598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02598-7

Navigation