Skip to main content
Log in

Approximate subgroups with bounded VC-dimension

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We combine the fundamental results of Breuillard, Green, and Tao (Publ Math Inst Hautes Études Sci 116:115–221, 2012) on the structure of approximate groups, together with “tame” arithmetic regularity methods based on work of the authors and Terry (J Eur Math Soc (JEMS) 24(2):583–621, 2022), to give a structure theorem for finite subsets A of arbitrary groups G where A has “small tripling” and bounded VC-dimension: Roughly speaking, up to a small error, A will be a union of a bounded number of translates of a coset nilprogression of bounded rank and step (see Theorem 2.1). We also prove a stronger result in the setting of bounded exponent (see Theorem 2.2). Our results extend recent work of Martin-Pizarro, Palacín, and Wolf (Selecta Math (N.S.) 27(4):Paper No. 53, 19,2021) on finite stable sets of small tripling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use [n] to denote \(\{1,\ldots ,n\}\).

  2. This acronym, which comes from model theory, stands for the “negation of the independence property”.

  3. The “complexity” of this Boolean combination can also be bounded in terms of the parameters d, k, r, and \(\epsilon \) only; see Remark 7.10.

  4. A group word is a term in the language of groups with a function symbol for inversion.

  5. To avoid ambiguity in words like “definable”, one can iterate the expansion by the symbols \(f^X_\phi \).

  6. In [39], coset progressions are not assumed to be symmetric, but it is easy to check that a Freiman 2-isomorphism preserving the identity also preserves symmetric sets.

  7. This is the abelian case of Ruzsa’s Covering Lemma (Lemma 7.2).

References

  1. Alon, N., Fox, J., Zhao, Y.: Efficient arithmetic regularity and removal lemmas for induced bipartite patterns. Discrete Anal., Paper No. 3, 14 (2019)

  2. Bogolioùboff, N.: Sur quelques propriétés arithmétiques des presque-périodes. Ann. Chaire Phys. Math. Kiev 4, 185–205 (1939)

    MathSciNet  Google Scholar 

  3. Breuillard, E.: A brief introduction to approximate groups, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., vol. 61. Cambridge University Press, Cambridge, pp. 23–50 (2014)

  4. Breuillard, E.: Lectures on approximate groups and Hilbert’s 5th problem, Recent trends in combinatorics, IMA Vol. Math. Appl., vol. 159. Springer, Cham, pp. 369–404 (2016)

  5. Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci. 116, 115–221 (2012)

    Article  MathSciNet  Google Scholar 

  6. Conant, G.: On finite sets of small tripling or small alternation in arbitrary groups. Combin. Probab. Comput. 29(6), 807–829 (2020)

    Article  MathSciNet  Google Scholar 

  7. Conant, G.: Quantitative structure of stable sets in arbitrary finite groups. Proc. Am. Math. Soc. 149(9), 4015–4028 (2021)

    Article  MathSciNet  Google Scholar 

  8. Conant, G., Pillay, A.: Pseudofinite groups and VC-dimension. J. Math. Log. 21(2), Paper No. 2150009 (2021)

  9. Conant, G., Pillay, A., Terry, C.: A group version of stable regularity. Math. Proc. Camb. Philos. Soc. 168(2), 405–413 (2020)

    Article  MathSciNet  Google Scholar 

  10. Conant, G., Pillay, A., Terry, C.: Structure and regularity for subsets of groups with finite VC-dimension. J. Eur. Math. Soc. (JEMS) 24(2), 583–621 (2022)

    Article  MathSciNet  Google Scholar 

  11. Dudley, R.M.: A course on empirical processes, École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097. Springer, Berlin, pp. 1–142 (1984)

  12. Freĭman, G.A.: Foundations of a Structural Theory of Set Addition. American Mathematical Society, Providence (1973). Translated from the Russian, Translations of Mathematical Monographs, vol. 37

  13. Green, B.: A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal. 15(2), 340–376 (2005)

    Article  MathSciNet  Google Scholar 

  14. Green, B., Ruzsa, I.Z.: Sets with small sumset and rectification. Bull. Lond. Math. Soc. 38(1), 43–52 (2006)

    Article  MathSciNet  Google Scholar 

  15. Green, B., Ruzsa, I.Z.: Freiman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. (2) 75(1), 163–175 (2007)

  16. Hrushovski, E.: Stable group theory and approximate subgroups. J. Am. Math. Soc. 25(1), 189–243 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hrushovski, E., Peterzil, Y., Pillay, A.: Groups, measures, and the NIP. J. Am. Math. Soc. 21(2), 563–596 (2008)

    Article  MathSciNet  Google Scholar 

  18. Hrushovski, E., Pillay, A.: On NIP and invariant measures. J. Eur. Math. Soc. (JEMS) 13(4), 1005–1061 (2011)

    Article  MathSciNet  Google Scholar 

  19. Lascar, D., Pillay, A.: Hyperimaginaries and automorphism groups. J. Symb. Logic 66(1), 127–143 (2001)

    Article  MathSciNet  Google Scholar 

  20. Martin-Pizarro, A., Palacín, D., Wolf, J.: A model-theoretic note on the Freiman–Ruzsa theorem. Selecta Math. (N.S.) 27(4), Paper No. 53, 19 (2021)

  21. Massicot, J.-C., Wagner, F.O.: Approximate subgroups. J. Éc. Polytech. Math. 2, 55–64 (2015)

    Article  MathSciNet  Google Scholar 

  22. Matoušek, J.: Bounded VC-dimension implies a fractional Helly theorem. Discrete Comput. Geom. 31(2), 251–255 (2004)

    Article  MathSciNet  Google Scholar 

  23. Newelski, L.: Topological dynamics of definable group actions. J. Symb. Logic 74(1), 50–72 (2009)

    Article  MathSciNet  Google Scholar 

  24. Petridis, G.: New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica 32(6), 721–733 (2012)

    Article  MathSciNet  Google Scholar 

  25. Pillay, A.: Type-definability, compact Lie groups, and o-minimality. J. Math. Log. 4(2), 147–162 (2004)

    Article  MathSciNet  Google Scholar 

  26. Ruzsa, I.Z.: Generalized arithmetical progressions and sumsets. Acta Math. Hungar. 65(4), 379–388 (1994)

    Article  MathSciNet  Google Scholar 

  27. Ruzsa, I.Z.: An analog of Freiman’s theorem in groups. Astérisque 258, 323–326(1999)

  28. Ruzsa, I.Z.: Towards a noncommutative Plünnecke-type inequality, An irregular mind, Bolyai Soc. Math. Stud., vol. 21. János Bolyai Math. Soc., Budapest, pp. 591–605 (2010)

  29. Sanders, T.: On a nonabelian Balog–Szemerédi-type lemma. J. Aust. Math. Soc. 89(1), 127–132 (2010)

    Article  MathSciNet  Google Scholar 

  30. Sanders, T.: On the Bogolyubov–Ruzsa lemma. Anal. PDE 5(3), 627–655 (2012)

    Article  MathSciNet  Google Scholar 

  31. Shelah, S.: Classification theory and the number of nonisomorphic models, 2nd edn. Studies in Logic and the Foundations of Mathematics, vol. 92. North-Holland Publishing Co., Amsterdam (1990)

  32. Simon, P.: A guide to NIP theories. Lecture Notes in Logic, vol. 44. Cambridge Scientific Publishers, Cambridge; Association for Symbolic Logic, Chicago (2015)

  33. Simon, P.: Rosenthal compacta and NIP formulas. Fundam. Math. 231(1), 81–92 (2015)

    Article  MathSciNet  Google Scholar 

  34. Simon, P.: VC-sets and generic compact domination. Isr. J. Math. 218(1), 27–41 (2017)

    Article  MathSciNet  Google Scholar 

  35. Sisask, O.: Convolutions of sets with bounded VC-dimension are uniformly continuous. Discrete Anal., Paper No. 1, 25 (2021)

  36. Tao, T.: The dichotomy between structure and randomness, Presented at the 2006 International Congress of Mathematicians, Madrid. https://www.math.ucla.edu/~tao/preprints/Slides/icmslides2.pdf

  37. Tao, T.: Product set estimates for non-commutative groups. Combinatorica 28(5), 547–594 (2008)

    Article  MathSciNet  Google Scholar 

  38. Tao, T.: Hilbert’s fifth problem and related topics, Graduate Studies in Mathematics, vol. 153. American Mathematical Society, Providence (2014)

    Book  Google Scholar 

  39. Tao, T., Van, V.: Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  40. Terry, C., Wolf, J.: Stable arithmetic regularity in the finite field model. Bull. Lond. Math. Soc. 51(1), 70–88 (2019)

    Article  MathSciNet  Google Scholar 

  41. Terry, C., Wolf, J.: Quantitative structure of stable sets in finite abelian groups. Trans. Am. Math. Soc. 373(6), 3885–3903 (2020)

    Article  MathSciNet  Google Scholar 

  42. van den Dries, L.: Approximate groups [according to Hrushovski and Breuillard, Green, Tao]. Astérisque 367–368, Exp. No. 1077, vii, 79–113 (2015)

  43. Vapnik, V.N., Červonenkis, A.Ja.: The uniform convergence of frequencies of the appearance of events to their probabilities. Teor. Verojatnost. i Primenen. 16, 264–279 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Conant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF grants: DMS-1855503 (Conant); DMS-1665035, DMS-1790212 (Pillay).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conant, G., Pillay, A. Approximate subgroups with bounded VC-dimension. Math. Ann. 388, 1001–1043 (2024). https://doi.org/10.1007/s00208-022-02524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02524-3

Mathematics Subject Classification

Navigation