Skip to main content
Log in

Lipschitz geometry of operator spaces and Lipschitz-free operator spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that there is an operator space notion of Lipschitz embeddability between operator spaces which is strictly weaker than its linear counterpart but which is still strong enough to impose linear restrictions on operator space structures. This shows that there is a nontrivial theory of nonlinear geometry for operator spaces and it answers a question in Braga et al. (Proc Am Math Soc 149(3):1139–1149, 2021). For that, we introduce the operator space version of Lipschitz-free Banach spaces and prove several properties of it. In particular, we show that separable operator spaces satisfy a sort of isometric Lipschitz-lifting property in the sense of Godefroy and Kalton. Gateaux differentiability of Lipschitz maps in the operator space category is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Notice that, if \(f:X\rightarrow Y\) is a map between Banach spaces, the following implications hold: f is linear and bounded \(\Rightarrow \) f is Lipschitz \(\Rightarrow \) f is uniformly continuous \(\Rightarrow \) f is coarse.

  2. Throughout this introduction, all operator spaces are considered to be over the complex field. We point out however that all the main results of this paper remain valid for real operator spaces with unchanged proofs.

  3. Theorem 1.2 and Proposition 4.4 of [6] are actually stronger as they only demand the embeddings to be almost completely coarse embeddings [6, Definition 4.1].

  4. As seen in Sect. 2.1, an operator metric space X is defined as a subset of \({\mathcal {B}}(H)\) for some Hilbert space H.

  5. A map \(f:X\rightarrow Y\) between \({\mathbb {K}}\)-vectors spaces is called \({\mathbb {K}}\)-affine if \(g=f-f(0)\) is \({\mathbb {K}}\)-linear.

  6. See [8, Definition 6.17] for the definition of a Gaussian measure on a Banach space and the comments after [8, Proposition 6.20] for a proof of this statement.

References

  1. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arens, R., Eells, J.: On embedding uniform and topological spaces. Pacific J. Math. 6, 397–403 (1956)

    Article  MathSciNet  Google Scholar 

  3. Albiac, F., Kalton, N.: Topics in Banach space theory, second ed., Graduate Texts in Mathematics, vol. 233, Springer, [Cham], With a foreword by Gilles Godefory (2016)

  4. Aliaga, R., Pernecká, E.: Supports and extreme points in Lipschitz-free spaces. Rev. Mat. Iberoam. 36(7), 2073–2089 (2020)

    Article  MathSciNet  Google Scholar 

  5. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in \(l_1\). J. ACM 52(5), 766–788 (2005)

    Article  MathSciNet  Google Scholar 

  6. Braga, B.M., Chávez-Domínguez, J.A.: Completely coarse maps are \({\mathbb{R} }\)-linear. Proc. Amer. Math. Soc. 149(3), 1139–1149 (2021)

    Article  MathSciNet  Google Scholar 

  7. Bates, S., Johnson, W.B., Lindenstrauss, J., Preiss, D., Schechtman, G.: Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal. 9(6), 1092–1127 (1999)

    Article  MathSciNet  Google Scholar 

  8. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, (2000)

  9. Blecher, D.: The standard dual of an operator space. Pacific J. Math. 153(1), 15–30 (1992)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J.: Real isomorphic complex Banach spaces need not be complex isomorphic. Proc. Amer. Math. Soc. 96(2), 221–226 (1986)

    Article  MathSciNet  Google Scholar 

  11. Blecher, D., Paulsen, V.: Tensor products of operator spaces. J. Funct. Anal. 99(2), 262–292 (1991)

    Article  MathSciNet  Google Scholar 

  12. Chang, C., Keisler, H.: Model theory, third ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, (1990)

  13. Effros, E., Ruan, Z.-J.: A new approach to operator spaces. Canad. Math. Bull. 34(3), 329–337 (1991)

    Article  MathSciNet  Google Scholar 

  14. Effros, E., Ruan, Z.-J.: Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, (2000)

  15. Ferenczi, V.: Uniqueness of complex structure and real hereditarily indecomposable Banach spaces. Adv. Math. 213(1), 462–488 (2007)

    Article  MathSciNet  Google Scholar 

  16. Figiel, T.: On nonlinear isometric embeddings of normed linear spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16, 185–188 (1968)

    MathSciNet  Google Scholar 

  17. Godefroy, G., Kalton, N. J.: Lipschitz-free Banach spaces, Studia Math. 159(1):121–141 (2003), Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday

  18. Godefroy, G.: A survey on Lipschitz-free Banach spaces. Comment. Math. 55(2), 89–118 (2015)

    MathSciNet  Google Scholar 

  19. Goldbring, I., Sinclair, T.: On Kirchberg’s embedding problem. J. Funct. Anal. 269(1), 155–198 (2015)

    Article  MathSciNet  Google Scholar 

  20. Heinrich, S., Mankiewicz, P.: Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Studia Math. 73(3), 225–251 (1982)

    Article  MathSciNet  Google Scholar 

  21. Kalton, N.J.: An elementary example of a Banach space not isomorphic to its complex conjugate. Canad. Math. Bull. 38(2), 218–222 (1995)

    Article  MathSciNet  Google Scholar 

  22. Kaufmann, P.: Products of Lipschitz-free spaces and applications. Studia Math. 226(3), 213–227 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kechris, A.: Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  24. Kasparov, G., Yu, G.: The coarse geometric Novikov conjecture and uniform convexity. Adv. Math. 206(1), 1–56 (2006)

    Article  MathSciNet  Google Scholar 

  25. Lehner, M.: \({M}_n\)-espaces, sommes d’unitaires et analyse harmonique sur le groupe libre, (1997), Thesis (Ph.D.)–Université Paris 6. Available at https://www.math.tugraz.at/~lehner/publ.html

  26. Mankiewicz, P.: On the differentiability of Lipschitz mappings in Fréchet spaces. Studia Math. 45, 15–29 (1973)

    Article  MathSciNet  Google Scholar 

  27. Mazur, S., Ulam, S.: Sur les transformations isométriques d’espaces vectoriels normés. C. R. Acad. Sci. Paris 194, 946–948 (1932)

    Google Scholar 

  28. Oikhberg, T., Ricard, É.: Operator spaces with few completely bounded maps. Math. Ann. 328(1–2), 229–259 (2004)

    Article  MathSciNet  Google Scholar 

  29. Ostrovskii, M.: Metric embeddings, De Gruyter Studies in Mathematics, vol. 49, De Gruyter, Berlin, (2013), Bilipschitz and coarse embeddings into Banach spaces

  30. Paulsen, V.: Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  31. Pisier, G.: Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  32. Ruan, Z.-J.: On real operator spaces, vol. 19, 2003, International Workshop on Operator Algebra and Operator Theory (Linfen, 2001), pp. 485–496

  33. Ryan, R.: Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, (2002)

  34. Stern, J.: Ultrapowers and local properties of Banach spaces. Trans. Amer. Math. Soc. 240, 231–252 (1978)

    Article  MathSciNet  Google Scholar 

  35. Weaver, N.: Lipschitz algebras, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2018), Second edition of [ MR1832645]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sinclair.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bruno M. Braga was partially supported by NSF grant DMS-2054860. Javier Alejandro Chávez-Domínguez was partially supported by NSF grant DMS-1900985. Thomas Sinclair was partially supported by NSF grants DMS-1600857 and DMS-2055155.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, B.M., Chávez-Domínguez, J.A. & Sinclair, T. Lipschitz geometry of operator spaces and Lipschitz-free operator spaces. Math. Ann. 388, 1053–1090 (2024). https://doi.org/10.1007/s00208-022-02518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02518-1

Mathematics Subject Classification

Navigation