Skip to main content
Log in

Curvature of the base manifold of a Monge–Ampère fibration and its existence

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we consider a special relative Kähler fibration that satisfies a homogenous Monge–Ampère equation, which is called a Monge–Ampère fibration. There exist two canonical types of generalized Weil–Petersson metrics on the base complex manifold of the fibration. For the second generalized Weil–Petersson metric, we obtain an explicit curvature formula and prove that the holomorphic bisectional curvature is non-positive, the holomorphic sectional curvature, the Ricci curvature, and the scalar curvature are all bounded from above by a negative constant. For a holomorphic vector bundle over a compact Kähler manifold, we prove that it admits a projectively flat Hermitian structure if and only if the associated projective bundle fibration is a Monge–Ampère fibration. In general, we can prove that a relative Kähler fibration is Monge–Ampère if and only if an associated infinite rank Higgs bundle is Higgs-flat. We also discuss some typical examples of Monge–Ampère fibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The name of the Monge–Ampère fibration was firstly given by Professor Bo Berndtsson.

  2. The negativity results of curvature are also obtained by Professor Bo Berndtsson independently using a different method based on the holomorphic motion structure of the fibration (see [7]).

References

  1. Ahlfors, L. V.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. 74(2), 171–191 (1961)

  2. Ahlfors, L.V.: Curvature properties of Teichmüller’s space. J. d’Analyse Math. 9, 161–176 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aikou, T.: Projective flatness of complex Finsler metrics. Publ. Math. Debrecen 63(3), 343–362 (2003)

    Article  MathSciNet  Google Scholar 

  4. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169, 531–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berndtsson, B.: Positivity of direct image bundles and convexity on the space of Kähler metrics. J. Differ. Geom. 81(3), 457–482 (2009)

    Article  MATH  Google Scholar 

  6. Berndtsson, B.: Strict and non strict positivity of direct image bundles. Math. Z. 269(3–4), 1201–1218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berndtsson, B.: Long geodesics in the space of Kähler metrics. Anal. Math. (2022). https://doi.org/10.1007/s10476-022-0140-z

    Article  MATH  Google Scholar 

  8. Berndtsson, B., Păun, M., Wang, X.: Algebraic fiber spaces and curvature of higher direct images. J. Inst. Math. Jussieu (2020). https://doi.org/10.1017/S147474802000050X

    Article  MATH  Google Scholar 

  9. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  10. Burns, D.: Curvatures of Monge–Ampère foliations and parabolic manifolds. Ann. Math. 115, 349–373 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, H., Liu, K., Wan, X.: Chern forms of holomorphic Finsler vector bundles and some applications. Int. J. Math. 27(4), 1650030 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finski, S.: On Monge–Ampère volumes of direct images. Int. Math. Res. Not. (2021). https://doi.org/10.1093/imrn/rnab058

    Article  MATH  Google Scholar 

  13. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Fujiki, A., Schumacher, G.: The moduli space of extremal compact Kähler manifolds and generalized Weil–Petersson metrics. Publ. Res. Inst. Math. Sci. 26, 101–183 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huybrechts, D.: Complex Geometry. An Introduction, pp. xii+309. Universitext. Springer, Berlin (2005)

  16. Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Reprint of the 1987 edition. Princeton Legacy Library. Princeton University Press, Princeton, NJ, (2014)

  17. Koiso, N.: Einstein metrics and complex structures. Invent. Math. 73(1), 71–106 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobayashi, S., Ochiai, T.: On complex manifolds with positive tangent bundles. J. Math. Soc. Jpn. 22(4), 499–525 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, K., Sun, X., Yau, S.T.: Good geometry on the curve moduli. Publ. Res. Inst. Math. Sci. 44(2), 699–724 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, K., Sun, X., Yang, X., Yau, S.-T.: Curvatures of moduli space of curves and applications. Asian J. Math. 21(5), 841–54 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, Z.: On the geometry of classifying spaces and horizontal slices. Am. J. Math. 121(1), 177–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, Z., Sun, X.: Weil–Petersson geometry on moduli space of polarized Calabi–Yau manifolds. J. Inst. Math. Jussieu 3(2), 185–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naumann, P.: Curvature of higher direct images. Ann. Fac. Sci. Toulouse Math. 301, 171–201 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nannicini, A.: Weil–Petersson metric in the space of compact polarized Kähler Einstein manifolds with \(c_1 = 0\). Manuscr. Math. 54, 405–438 (1986)

    Article  MATH  Google Scholar 

  25. Schumacher, G.: On the geometry of moduli spaces. Manuscr. Math. 50, 229–267 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schumacher, G.: Harmonic maps of the moduli space of compact Riemann surfaces. Math. Ann. 275(3), 455–466 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schumacher, G.: The Curvature of the Petersson–Weil Metric on the Moduli Space of Kähler–Einstein Manifolds, Complex Analysis and Geometry, pp. 339–354. Univ. Ser. Math, Plenum, New York (1993)

  28. Schumacher, G.: Positivity of relative canonical bundles and applications. Invent. Math. 190, 1–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shiffman, B., Sommese, A.: Vanishing Theorems on Complex Manifolds. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  30. Siu, Y.-T.: Curvature of the Weil-Petersson metric in the moduli space of compact Kähler–Einstein manifolds of negative first Chern class. In: Wong, P.-M., Howard, A. (eds.) Complex Analysis, Papers in Honour of Wilhelm Stall. Vieweg, Braunschweig (1986)

  31. Smolentsev, N.K.: Curvature of the space of associated metrics on a symplectic manifold. Sib. Math. J. 33, 111–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tian, G.: Smoothness of the Universal Deformation Space of Compact Calabi–Yau Manifolds and its Petersson–Weil Metric. In: Mathematical Aspects of String Theory (San Diego, Calif., 1986), pp. 629–646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore. 32G13 (32G15 53C25 58D99) (1987)

  33. Todorov, A.N.: The Weil–Petersson geometry of the moduli space of \(SU(n\ge 3)\) (Calabi–Yau) manifolds I. Commun. Math. Phys. 126(2), 325–346 (1989)

    Article  MATH  Google Scholar 

  34. Tromba, A.J.: On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil–Petersson metric. Manuscr. Math. 56(4), 475–497 (1986)

    Article  MATH  Google Scholar 

  35. Wan, X., Wang, X.: Poisson–Kähler fibration I: curvature of base manifold. arXiv:1908.03955v2 (2019)

  36. Wan, X., Zhang, G.: The asymptotic of curvature of direct image bundle associated with higher powers of a relatively ample line bundle. Geom. Dedic. 214, 489–517 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, C.-L.: Curvature properties of the Calabi–Yau moduli. Doc. Math. 8, 577–590 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, X.: Curvature restrictions on a manifold with a flat Higgs bundle. arXiv: 1608.00777

  39. Wang, X.: A curvature formula associated to a family of pseudoconvex domains. Ann. Inst. Fourier (Grenoble) 67(1), 269–313 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, X.: Curvature of higher direct image sheaves and its application on negative-curvature criterion for the Weil–Petersson metric. arXiv: 1607.03265

  41. Wang, X.: Notes on variation of Lefschetz star operator and \(T\)-Hodge theory. arXiv:1708.07332

  42. Wells, O.R.: Differential Analysis on Complex Manifolds. Third edition. With a new appendix by Oscar Garcia-Prada. Graduate Texts in Mathematics, vol. 65. Springer, New York (2008)

  43. Wolpert, S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85(1), 119–145 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, Y.: The Riemannian sectional curvature operator of the Weil–Petersson metric and its application. J. Differ. Geom. 96(3), 507–530 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Bo Berndtsson and Ya Deng for several useful discussions about the topics of this paper. We also would like to thank the anonymous reviewers for their comments that helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyuan Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xueyuan Wan is partially supported by the National Natural Science Foundation of China (Grant No. 12101093) and Scientific Research Foundation of the Chongqing University of Technology.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Wang, X. Curvature of the base manifold of a Monge–Ampère fibration and its existence. Math. Ann. 387, 353–387 (2023). https://doi.org/10.1007/s00208-022-02475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02475-9

Mathematics Subject Classification

Navigation