Skip to main content
Log in

Local Hölder continuity for fractional nonlocal equations with general growth

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study generalized fractional p-Laplacian equations to prove local boundedness and Hölder continuity of weak solutions to such nonlocal problems by finding a suitable fractional Sobolev-Poincaré inquality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analysed.

References

  1. Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: On fractional Orlicz–Sobolev spaces. Anal. Math. Phys. 11(2), 21 (2021)

  2. Balci, A., Cianchi, A., Diening, L., Maz’ya, V.: A pointwise differential inequality and second order regularity for nonlinear elliptic systems. Math. Ann. 383(3–4), 1–50 (2022). https://doi.org/10.1007/s00208-941021-02249-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Baroni, P., Lindfors, C., Vasseur, A.: The Cauchy–Dirichlet problem for a general class of parabolic equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 34(3), 593–624 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byun, S., Ok, J., Song, K.: Hölder regularity for weak solutions to nonlocal double phase problems. J. Math. Pures Appl. arXiv:2108.09623 (2021) (to appear)

  5. Caffarelli, L., Chan, C.. H., Vasseur, A.: Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc 24(3), 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaker, J., Kim, M.: Local regularity for nonlocal equations with variable exponents. arXiv:2107.06043. (2021)

  8. Chaker, J., Kim, M., Weidner, M.: Regularity for nonlocal problems with non-standard growth. Math. Ann. (2022). https://doi.org/10.1007/s00208-022-02405-9

  9. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Filippis, C., Mingione, G.: Gradient regularity in mixed local and nonlocal problems. arXiv:2204.06590

  11. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242(2), 973–1057 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differ. Eqs. 267(1), 547–586 (2019)

    Article  MATH  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math 20(3), 523–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diening, L., Lee,M.,Ok, J.: Parabolicweighted sobolev-poincaré type inequalities. Nonlinear Anal. 223, Paper No. 113060, p 31 (2022)

  18. Diening, L., Stroffolini, B., Verde, A.: Everywhere regularity of functionals with \(\varphi \)-growth. Manuscripta Math. 129(4), 449–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding, M., Zhang, C., Zhou, S.: Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations. Calc. Var. Partial Differ. Eqs. 60(1), 45 (2021)

    MATH  Google Scholar 

  20. Fang, Y., Zhang, C.: On weak and viscosity solutions of nonlocal double phase equations. Int. Math. Res. Not. (2021). https://doi.org/10.1093/imrn/rnab351

  21. Fernández Bonder, J., Salort, A.. M.: Fractional order Orlicz–Sobolev spaces. Funct. Anal 277(2), 333–367 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fernández Bonder, J., Salort, A., Vivas, H.: Interior and up to the boundary regularity for the fractional g-Laplacian: the convex case, Fernández Bonder. J. Salort A. Vivas H. Nonlinear Anal. 223, Paper No. 113060, p 31 (2022)

  23. Fernández Bonder, J., Salort, A., Vivas, H.: Global Hölder regularity for eigenfunctions of the fractional g-Laplacian, Fernández Bonder. J. Salort A. Vivas H. arXiv:2112.00830. (2021)

  24. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. Trans. Amer. Math. Soc. 375(8), 5393–5423 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Giacomoni, J., Kumar, D., Sreenadh, K.: Interior and boundary regularity results for strongly nonhomogeneous \(p, q\)-fractional problems. Adv. Calc. Var. (2021). https://doi.org/10.1515/acv-2021-0040

  26. Giusti, E.: Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge (2003)

    Book  MATH  Google Scholar 

  27. Harjulehto, P., Hästö, P.: Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Mathematics. Springer, Cham (2019)

  28. Harjulehto, P., Hästö, P., Lee, M.: Hölder continuity of quasiminimizers and \(\Omega \)-minimizers of functionals with generalized Orlicz growth. Ann. Sci. Norm. Super. Pisa Cl. Sci. XXII 2, 549–582 (2021)

  29. Hästö, P., Ok, J.: Maximal regularity for local minimizers of non-autonomous functionals. J. Eur. Math. Soc. (JEMS) 24(4), 1285–1334 (2022). https://doi.org/10.4171/JEMS/1118

  30. Kassmann, M.: The theory of De Giorgi for non-local operators, language=English, with English and French summaries. C. R. Math. Acad. Sci. Paris 345(11), 621–624 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Eqs. 34(1), 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional \(p\)-Laplace type equations. English, with English and French summaries. J. Math. Pures Appl. 132(9), 1–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Korvenpää, J., Kuusi, T., Palatucci, G.: Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations. Math. Ann. 369(3–4), 1443–1489 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Eqs. 55(3), 29 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Comm. Math. Phys. 337(3), 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Comm. Partial Differ. Eqs. 16(2–3), 311–361 (1991)

    Article  MATH  Google Scholar 

  38. Lindgren, E.: Hölder estimates for viscosity solutions of equations of fractional \(p\)-Laplace type. NoDEA Nonlinear Differ. Eqs. Appl. 23(5), 18 (2016)

    MATH  Google Scholar 

  39. Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23(4), 1–25 (1996)

  40. Mengesha, T., Schikorra, A., Yeepo, S.: Calderon–Zygmund type estimates for nonlocal PDE with Hölder continuous kernel. Adv. Math. 383, 64 (2021)

    Article  MATH  Google Scholar 

  41. Mihăilescu, M., Rădulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces. Ann. Inst. Fourier (Grenoble) 58(6), 2087–2111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nowak, S.: Higher Hölder regularity for nonlocal equations with irregular kernel. Calc. Var. Partial Differ. Eqs. 60(1), 37 (2021)

    MATH  Google Scholar 

  43. Nowak, S.: Regularity theory for nonlocal equations with VMO coefficients. Ann. Inst. H. Poincaré Anal. Non Linréaire. (2021). https://doi.org/10.4171/AIHPC/37

  44. Ok, J.: Partial Hölder regularity for elliptic systems with non-standard growth. J. Funct. Anal. 274(3), 723–768 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ok, J.: Local Hölder regularity for nonlocal equations with variable powers. arXiv:2107.06611. (2021)

  46. book Rao, M.M., Ren, Z.D.: Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250. Marcel Dekker, Inc., New York (2002)

  47. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank referees for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihoon Ok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Byun was supported by NRF-2021R1A4A1027378. H. Kim was supported by NRF-2020R1C1C1A01009760, J. Ok was supported by NRF-2017R1C1B2010328.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Kim, H. & Ok, J. Local Hölder continuity for fractional nonlocal equations with general growth. Math. Ann. 387, 807–846 (2023). https://doi.org/10.1007/s00208-022-02472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02472-y

Mathematics Subject Classification

Navigation