Skip to main content
Log in

On the shape of Meissner solutions to the 2-dimensional Ginzburg–Landau system

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper concerns the asymptotic behavior of the stable solution \((f_\lambda ,{\mathbf {Q}}_\lambda )\) of the full Meissner state equation for a two-dimensional superconductor with penetration depth \(\lambda \) and Ginzburg–Landau parameter \(\kappa \), and subjected to an applied magnetic field \({\mathcal {H}}^e\). It is known that the solution is stable if the minimum value of \(|f_\lambda (x)|^2-|{\mathbf {Q}}_\lambda (x)|^2\) is larger than 1/3, and the solution loses its stability when the minimum value reached 1/3. It has been conjectured that the location of the minimum points of \(|f_\lambda (x)|^2-|{\mathbf {Q}}_\lambda (x)|^2\) has connection with the location of vortex nucleation of the superconductor. In this paper, we prove that if the penetration depth \(\lambda \) is small, the solution \((f_\lambda , {\mathbf {Q}}_\lambda )\) exhibits boundary layer behavior, and \((1-f_\lambda , {\mathbf {Q}}_\lambda )\) exponentially decays in the normal direction away from the boundary. Moreover, the minimum points of \(|f_\lambda (x)|^2-|{\mathbf {Q}}_\lambda (x)|^2\) locate near the set \(S({\mathcal {H}}^e)\), which is determined by the applied magnetic field \({\mathcal {H}}^e\) and the geometry of the domain. In the special case where the applied magnetic field \({\mathcal {H}}^e\) is constant, the minimum points of \(|f_\lambda (x)|^2-|{\mathbf {Q}}_\lambda (x)|^2\) locate near the maximum points of the curvature of the domain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

Notes

  1. See also [31, Chapter 11] and [9] for the corresponding results of type I superconductors.

  2. See also [5, 25, 26] for the derivation of (1.4) and (1.1).

  3. Uniqueness of the stable Meissner solution of the system in a three dimensional domain can be directly derived from Lemma 3.1 in [26].

  4. See also [3] for the three dimensional system.

  5. We refer to [14, Theorem 8.8] for the interior \(H^2\) estimates, [14, Theorem 8.12] for the boundary \(H^2\) estimates.

References

  1. Adams, R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Agmon, S.: Lectures on exponential decay of solutions of second order elliptic equations. Princeton Univ. Press, Princeton (1982)

    MATH  Google Scholar 

  3. Bates, P., Pan, X.B.: Nucleation of instability in Meissner state of 3-dimensional superconductors. Comm. Math. Phys. 276, 571–610 (2007). (Erratum, 283 (2008), 861)

  4. Berestycki, H., Bonnet, A., Chapman, S.J.: A semi-elliptic system arising in the theory of type-II superconductivity. Comm. Appl. Nonlinear Anal. 1, 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Bonnet, A., Chapman, S.J., Monneau, R.: Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as \(\kappa \rightarrow \infty \). SIAM J. Math. Anal. 31, 1374–1395 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chapman, S.J.: Superheating fields of type II superconductors. SIAM J. Appl. Math. 55, 1233–1258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chapman, S.J.: Nucleation of vortices in type II superconductors in increasing magnetic fields. Appl. Math. Lett. 10(2), 29–31 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Wu, L.: Elliptic partial differential equations of second order and elliptic systems. Science Press, Beijing (1997)

    Google Scholar 

  9. Conti, S., Otto, F., Serfaty, S.: Branched microstructures in the Ginzburg-Landau model of type-I superconductors. SIAM J. Math. Anal. 48(4), 2994–3034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Correggi, M., Rougerie, N.: Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime. Arch. Rat. Mech. Anal. 219(1), 553–606 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 3. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  12. Fournais, S., Helffer, B.: Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and Their Applications. Birkhaüser, Boston-Basel-Berlin (2009)

    MATH  Google Scholar 

  13. Fournais, S., Kachmar, A.: Nucleation of bulk superconductivity close to critical magnetic field. Adv. Math. 226, 1213–1258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  15. Ginzburg, V., Landau, L.: On the theory of superconductivity. Soviet Phys. JETP 20, 1064–1082 (1950)

    Google Scholar 

  16. Helffer, B., Pan, X.B.: Upper critical field and location of surface nucleation of superconductivity. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 20, 145–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Math. Monographs. Amer. Math. Soc, Providence, Rhode Island (1992)

    Google Scholar 

  18. Kramer, L.: Vortex nucleation in type II superconductors. Phys. Lett. A 24(15), 571–572 (1967)

    Article  Google Scholar 

  19. Lin, F.H., Du, Q.: Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28, 1265–1293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, K.N., Pan, X.B.: Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127, 73–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matricon, J., Saint-James, D.: Superheating fields in superconductors. Phys. Lett. A 24, 241 (1967)

    Article  Google Scholar 

  22. Monneau, R.: Quasilinear elliptic systems arising in a three-dimensional type-II superconductor for infinite \(\kappa \). Nonlinear Anal. 52, 917–930 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pan, X.B.: Surface superconductivity in applied magnetic fields above \(H_{C_2}\). Comm. Math. Phys. 228, 327–370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pan, X.B.: Surface superconductivity in 3-dimensions. Trans. Am. Math. Soc. 356(10), 3899–3937 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, X.B.: Nucleation of instability of Meissner state of superconductors and related mathematical problems. In: Bian, B.J., Li, S.H., Wang, X.J. (eds.) Trends in Partial Differential Equations, “Advanced Lectures in Mathematics’’. International Press, Boston (2009)

    Google Scholar 

  26. Pan, X.B.: Meissner states of type II superconductors. J. Elliptic Parabolic Equations 4, 441–523 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pan, X.B., Kwek, K.: On a problem related to vortex nucleation of superconductivity. J. Diff. Equ. 182, 141–168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serfaty, S.: Local minimizers for the Ginzburg-Landau energy near critical magnetic field, I, II. Comm. Contemp. Math. 1, 213–254, 295–333 (1999)

  29. Serfaty, S.: Stable configurations in superconductivity: uniqueness, multiplicity, and vortex nucleation. Arch. Rat. Mech. Anal. 149, 329–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sandier, E., Serfaty, S.: Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Lineaire 17, 119–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhaüser, Boston-Basel-Berlin (2007)

    MATH  Google Scholar 

  32. Valles, N., Liepe, M.: The superheating field of niobium: theory and experiment. In: Proceedings of the 15th International Conference on RF Superconductivity SRF2011, Chicago, IL, USA, 25-29 July (2011), pp. 293-301. https://accelconf.web.cern.ch/SRF2011/papers/tuioa05.pdf

  33. Xiang, X.F.: On the shape of Meissner solutions to a limiting form of Ginzburg -Landau systems. Arch. Rational Mech. Anal. 222, 1601–1640 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for many valuable suggestions and comments that helped to improve the paper. This work was partially supported by the National Natural Science Foundation of China grant no. 11771335 and 12071142, and by the research grants no. UDF01001805 and GXWD20201231105722002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfei Xiang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Uniqueness of the solution to system (2.11)

Lemma A.1

If (2.11) has a solution \((f_{0}, {\mathbf {Q}}_{0})\in C^2({\mathbb {R}}_{+}^2, {\mathbb {R}}^3)\) satisfying (2.12), then it is unique.

Proof

The uniqueness has been proved in Proposition 2.2, where we used the fact that the functional \({\mathcal {E}}\) is strictly convex. Here we give a direct proof. The idea of the proof goes back to Lemma 4.2 in [26] where the case of the bounded domains was treated.

Let \((f_{1}, {\mathbf {Q}}_1)\) and \((f_{2}, {\mathbf {Q}}_2)\) be two solutions, both satisfying

$$\begin{aligned} |f_{0}|^2-|{\mathbf {Q}}_{0}|^2>\frac{1}{3}+\delta ^2. \end{aligned}$$

Let \(h\in H^1(\mathbb {R}^2)\) and \({\mathbf {B}}\in H^1(\text {curl}, \mathbb {R}^2)\), both with compact support. We have

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}_{+}^2}&\Big \{\frac{1}{\kappa ^2} \nabla (f_1-f_2)\cdot \nabla h- \left[ (1-|f_1|^2-|{\mathbf {Q}}_1|^2)f_1-(1-|f_2|^2-|{\mathbf {Q}}_2|^2)f_2\right] h\\&\qquad +(|f_1|^2 {\mathbf {Q}}_1-|f_2|^2 {\mathbf {Q}}_2)\cdot {\mathbf {B}}+\text {curl}({\mathbf {Q}}_1-{\mathbf {Q}}_2)\cdot \text {curl}{\mathbf {B}}\Big \}dz=0. \end{aligned} \end{aligned}$$

Take \(h=\eta ^2(f_1-f_2)\) and \({\mathbf {B}}=\eta ^2({\mathbf {Q}}_1-{\mathbf {Q}}_2)\), where \(\eta \) is a smooth function with compact support in \(\mathbb {R}^2.\) Then we have

$$\begin{aligned}&\int _{\mathbb {R}_{+}^2}\big \{\frac{1}{\kappa ^2} |\nabla (\eta (f_1-f_2))|^2+|\text {curl}(\eta ({\mathbf {Q}}_1-{\mathbf {Q}}_2))|^2dx \nonumber \\&\quad +\int _{\mathbb {R}_{+}^2}\int _0^1 \{| f_t({\mathbf {Q}}_1-{\mathbf {Q}}_2)+2(f_1-f_2){\mathbf {Q}}_t|^2 +(3f_t^2-3|{\mathbf {Q}}_t|^2-1)|f_1-f_2|^2\big \}\eta ^2 dtdz \nonumber \\&\quad =\int _{\mathbb {R}_{+}^2}\big \{\frac{1}{\kappa ^2} |(f_1-f_2)\nabla \eta |^2+|({\mathbf {Q}}_1-{\mathbf {Q}}_2)\times \nabla \eta |^2dx, \end{aligned}$$
(A.1)

where \(f_t=f_1+t(f_1-f_2)\) and \({\mathbf {Q}}_t={\mathbf {Q}}_1+t({\mathbf {Q}}_1-{\mathbf {Q}}_2)\). Note that

$$\begin{aligned} \begin{aligned}&| f_t({\mathbf {Q}}_1-{\mathbf {Q}}_2)+2(f_1-f_2){\mathbf {Q}}_t|^2+(3f_t^2-3|{\mathbf {Q}}_t|^2-1)|f_1-f_2|^2 \ge \frac{\delta ^2}{9}|{\mathbf {Q}}_1-{\mathbf {Q}}_2|^2,\\&3f_t^2-3|{\mathbf {Q}}_t|^2-1\ge \delta ^2. \end{aligned} \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned}&| f_t({\mathbf {Q}}_1-{\mathbf {Q}}_2)+2(f_1-f_2){\mathbf {Q}}_t|^2+(3f_t^2-3|{\mathbf {Q}}_t|^2-1)|f_1-f_2|^2\\&\quad \ge \frac{\delta ^2}{18}|{\mathbf {Q}}_1-{\mathbf {Q}}_2|^2+\frac{\delta ^2}{2}|f_1-f_2|^2. \end{aligned} \end{aligned}$$

Taking \(\eta =e^{-\sigma r} \xi (r)\), where \(\xi (r)\) is a smooth cut-off function such that \(\xi (r)=1\) for \(r<R\), \(\xi (r)=0\) for \(r > R + 1,\) and \(\xi '(r)\le 2.\) Then we have

$$\begin{aligned} \begin{aligned}&\int _{B_R^{+}}\left( \frac{\delta ^2}{18}|{\mathbf {Q}}_1-{\mathbf {Q}}_2|^2 +\frac{\delta ^2}{2}|f_1-f_2|^2\right) e^{-2\sigma r} dz\\&\quad \le \frac{\sigma ^2}{\kappa ^2}\int _{B_{R+1}^{+}}|f_1-f_2|^2e^{-2\sigma r} dz+ \sigma ^2\int _{B_{R+1}^{+}}|{\mathbf {Q}}_1-{\mathbf {Q}}_2|^2e^{-2\sigma r} dz\\&\qquad + 4 e^{-2\sigma R}\int _{B_{R+1}^{+}\backslash B_{R}^{+}}|{\mathbf {Q}}_1-{\mathbf {Q}}_2|^2dz +\frac{4}{\kappa ^2}e^{-2\sigma R}\int _{B_{R+1}^{+}\backslash B_{R}^{+}}|f_1-f_2|^2dz. \end{aligned}\nonumber \\ \end{aligned}$$

Letting \(R\rightarrow \infty \) first and then letting \(\sigma \rightarrow 0\) in the above inequality , we obtain that \(f_1=f_2\) and \({\mathbf {Q}}_1={\mathbf {Q}}_2.\) \(\square \)

Appendix B: Exponential decay for some ODEs

Consider the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} u''=a_{11}(z_2) u+a_{12}(z_2)v+b_1(z_2) &{}\quad \text {in }\mathbb {R}_{+},\\ v''=a_{21}(z_2) u+a_{22}(z_2)v+b_2(z_2) &{}\quad \text {in }\mathbb {R}_{+},\\ u'(0)=u_0,\quad v'(0)=v_0,\\ u(\infty )=0,\quad v(\infty )=0.&{} \end{array}\right. } \end{aligned}$$
(B.1)

Definition B.1

We say that the coefficient matrix \(A(z_2)=(a_{ij}(z_2))_{2\times 2}\) is elliptic if there exist positive constants \(\lambda \) and M such that

$$\begin{aligned} \lambda |\xi |^2\le \sum ^{2}_{i,j=1} a_{ij}(z_2)\xi _i\xi _j\le M |\xi |^2. \end{aligned}$$
(B.2)

for all \(\xi \in {\mathbb {R}}^2\) and almost every \(z_2 \in {\mathbb {R}}_{+}\).

Proposition B.2

Assume that the matrix \(A(z_2)=(a_{ij}(z_2))_{2\times 2}\) is elliptic, and suppose there exist positive constants \(\alpha _5\), \(\beta _5\), \(M_1\) and \(M_2\) such that

$$\begin{aligned} |b_1(z_2)|\le M_1 e^{-\alpha _5 z_2}, \quad |b_2(z_2)|\le M_2 e^{-\beta _5 z_2},\quad z_2\ge 0. \end{aligned}$$
(B.3)

Then system (B.1) has a unique solution \((u, v)\in C^2(\mathbb {R}_+)\cap H^1(\mathbb {R}_+)\). Moreover, for any real number \(\mu \) satisfying \(0<\mu <\min \{\sqrt{\lambda },\alpha _5,\beta _5\}\) we have

$$\begin{aligned} |u(z_2)|\le C e^{-\mu z_2}, \quad |v(z_2)|\le C e^{-\mu z_2}, \quad z_2\ge 0, \end{aligned}$$
(B.4)

where the constant C depends on the constants in (B.2) and (B.3).

Proof

Replacing u by \(u-u_0 e^{-\lambda z_2}\) and v by \(v-v_0 e^{-\lambda z_2}\), we see that there is no loss of generality in assuming \(u_0=v_0=0.\) Let us fix a constant \(\mu \) with \(0<\mu <\min \{\sqrt{\lambda },\alpha _5,\beta _5\}\), and take a function \(\eta \in C^2(\mathbb {R}_+)\) satisfying

$$\begin{aligned} \eta (z_2)=1\quad \text {for } z_2\in [0,1],\quad e^{-\mu x}\eta (z_2)<2\quad \text {and}\quad |\eta '(z_2)|\le \mu \eta (z_2)\quad \text {for all } z_2\ge 0.\nonumber \\ \end{aligned}$$
(B.5)

Define a space

$$\begin{aligned} {\mathscr {Y}}=\left\{ (u, v):\; (\eta u)\in H^1(\mathbb {R}_+),\; (\eta v)\in H^1(\mathbb {R}_+),\; u'(0)=0, \; v'(0)=0\right\} . \end{aligned}$$

Equipped with the norm

$$\begin{aligned} \Vert (u,v)\Vert _{{\mathscr {Y}}}=\left( \Vert \eta u\Vert _{H^1(\mathbb {R}_{+})}^2+\Vert \eta v\Vert _{H^1(\mathbb {R}_{+})}^2\right) ^{1/2} \end{aligned}$$

and the inner product

$$\begin{aligned} \langle (u_1, v_1),(u_2, v_2)\rangle =\int _{\mathbb {R}_+}\{\eta ^2 (u_1 u_2+v_1 v_2)+ (\eta u_1)'(\eta u_2)'+ (\eta v_1)'(\eta v_2)'\}dz_2, \end{aligned}$$

\({\mathscr {Y}}\) is a Hilbert space.

Define a bilinear form \({\mathcal {B}}[(\cdot ,\cdot ),(\cdot ,\cdot )]\) on \({\mathscr {Y}}\) by

$$\begin{aligned} \begin{aligned}&{\mathcal {B}}[(u,v),(u^*, v^*)]\\&\quad =\int _{\mathbb {R}^+} \Big \{(\eta u)' (\eta u^*)'+(\eta v)' (\eta v^*)'-\frac{\eta '^2}{\eta ^2}(\eta u)(\eta u^*) -\frac{\eta '^2}{\eta ^2}(\eta v)(\eta v^*)\\&\qquad -\frac{\eta '}{\eta }[(\eta u^*)'(\eta u)-(\eta u^*)(\eta u)'] -\frac{\eta '}{\eta }[(\eta v^*)'(\eta v)-(\eta v^*)(\eta v)']\\&\qquad +(a_{11}(z_2) \eta u+a_{12}(z_2)\eta v)(\eta u^*)+(a_{21}(z_2) \eta u+a_{22}(z_2)\eta v)(\eta v^*) \Big \} dz_2. \end{aligned} \end{aligned}$$

Using the condition (B.2) on the coefficient matrix A and the assumption (B.5) on the function \(\eta \), and by the Cauchy’s inequality, there exists a constant K depending only on the constants in (B.2) and \(\mu \), such that for all (uv) and \((u^*,v^*)\) in \({\mathscr {Y}}\) we have

$$\begin{aligned} \begin{aligned} {\mathcal {B}}[(u,v),(u^*, v^*)]&\le K \Vert (u,v)\Vert _{{\mathscr {Y}}}\Vert (u^*,v^*)\Vert _{{\mathscr {Y}}},\\ {\mathcal {B}}[(u,v),(u, v)]&\ge \min \{1, \lambda -\mu ^2\}\Vert (u,v)\Vert _{{\mathscr {Y}}}^2. \end{aligned} \end{aligned}$$

Therefore, \({\mathcal {B}}\) is bounded and coercive on \({\mathscr {Y}}\). Then the existence and uniqueness of the solution to (B.1) in \({\mathscr {Y}}\) follows from the Lax-Milgram lemma.

Set \({\check{u}}=\eta u\) and \({\check{v}}=\eta v\). Then \(({\check{u}}, {\check{v}})\) satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} {\check{u}}''=\frac{2\eta '}{\eta }{\check{u}}'+\frac{\eta ''}{\eta }{\check{u}} -\frac{2\eta '^2}{\eta ^2}{\check{u}}+a_{11}(z_2) {\check{u}}+a_{12}(z_2){\check{v} }+\eta b_1(z_2) &{}\quad \text {in }\mathbb {R}_{+},\\ {\check{v}}''=\frac{2\eta '}{\eta }{\check{v}}'+\frac{\eta ''}{\eta }{\check{v}} -\frac{2\eta '^2}{\eta ^2}{\check{v}}+a_{21}(z_2) {\check{u}}+a_{22}(z_2){\check{v}} +\eta b_2(z_2) &{}\quad \text {in }\mathbb {R}_{+},\\ {\check{u}}'(0)=0,\quad {\check{v}}'(0)=0,\\ {\check{u}}(\infty )=0,\quad {\check{v}}(\infty )=0.&{} \end{array}\right. } \end{aligned}$$
(B.6)

Also, we have

$$\begin{aligned}&\min \{1, \lambda -\mu ^2\}\left( \Vert {\check{u}}\Vert _{H^1(\mathbb {R}_{+})}^2+\Vert {\check{v}}\Vert _{H^1(\mathbb {R}_{+})}^2\right) \le {\mathcal {B}}[(u,v),(u, v)]\\&\quad =\int _{\mathbb {R}^+}\left( \eta b_1(z_2) {\check{u}}+\eta b_2(z_2){\check{v}}\right) dz_2. \end{aligned}$$

Then by the Cauchy’s inequality we get

$$\begin{aligned} \Vert {\check{u}}\Vert _{H^1(\mathbb {R}_{+})}+\Vert {\check{v}}\Vert _{H^1(\mathbb {R}_{+})}\le C. \end{aligned}$$

Since \(H^1(\mathbb {R}_{+})\) is continuously embedded into \(C^0(\mathbb {R}_{+})\), then we have

$$\begin{aligned} \Vert {\check{u}}\Vert _{C^0(\mathbb {R}_{+})}+\Vert {\check{v}}\Vert _{C^0(\mathbb {R}_{+})}\le C. \end{aligned}$$

This proves (B.4). \(\square \)

Proof of Proposition 2.5

From Proposition 2.2, we obtain the decay estimate for \( |{\hat{f}}_{0}(y_1, z_2)|\) and \( |{\hat{{\mathbf {Q}}}}_0(y_1,z_2)|\) at \(y_1=0\). Next we derive the estimates for \(\partial _{y_1}{\hat{f}}_{0}(y_1, z_2)\) and \(\partial _{y_1}{\hat{{\mathbf {Q}}}}_0(y_1,z_2)\) at \(y_1=0.\) Recall that

$$\begin{aligned} p(z_2):=\partial _{y_1} {\hat{f}}_{0}(0,z_2),\quad (q (z_2),0):=\partial _{y_1} {\hat{{\mathbf {Q}}}}_{0}(0,z_2). \end{aligned}$$

Then from the equation (5.18) in section 5, we see that \((p(z_2), q (z_2))\) satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{\kappa ^2} p''(z_2)=(3|f_0|^2+|{Q}_0^1|^2-1)p+2Q_0^1 f_0 q &{}\quad \text {in }\mathbb {R}_{+},\\ q''(z_2)=2f_0 {Q}_0^1 p+{f}_0^2 q &{}\quad \text {in }{\mathbb {R}}_{+},\\ p'(0)=0,\quad q' (0)=-\hat{{\mathcal {H}}}_{y_1}^e(0),\\ p(\infty )=0,\quad q(\infty )=0.&{} \end{array}\right. } \end{aligned}$$
(B.7)

Let \(\lambda (z_2)\) be the minimum eigenvalue of the matrix

$$\begin{aligned} \left( \begin{matrix} 3|f_0|^2+|{Q}_0^1|^2-1 &{} \quad 2f_0 Q_0^1 \\ 2f_0 Q_0^1 &{}\quad |f_0|^2 \end{matrix}\right) . \end{aligned}$$

Then \(\lambda (z_2)\rightarrow 1\) as \(z_2\rightarrow \infty .\) Now we can apply Proposition B.2 to conclude that, for any real number \(\beta _1\) satisfying \(0<\beta _1<1\) we have

$$\begin{aligned} |p(z_2)|+|q (z_2)|\le C(\kappa , \beta _1, \Omega , {\mathcal {H}}^e) e^{-\beta _1 z_2}. \end{aligned}$$

Applying Proposition B.2 again for the first equation in (B.7) and noting that \(|Q_0^1|\le C e^{-\beta _1 z_2},\) for any real number \(\alpha _1\) satisfying \(0<\alpha _1<\min \{2, \sqrt{2}\kappa \}\), we have

$$\begin{aligned} |p(z_2)|\le C(\kappa , \alpha _1, \beta _1, \Omega , {\mathcal {H}}^e) e^{-\alpha _1 z_2}. \end{aligned}$$

We derive the higher derivative estimates of \({\hat{f}}_{0}(y_1, z_2)\) and \({\hat{{\mathbf {Q}}}}_0(y_1,z_2)\) at \(y_1=0.\) From the equation (3.5), we see that

$$\begin{aligned} u(z_2):=\partial _{y_1^{i}}^{i} {\hat{f}}_{0}(0,z_2),\quad v(z_2):=\partial _{y_1^{i}}^{i} {\hat{Q}}_{0}^1(0,z_2) \quad \text {for }i=2,3 \end{aligned}$$

satisfy

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{1}{\kappa ^2} u''(z_2)=(3|f_0|^2+|{Q}_0^1|^2-1)u+2Q_0^1 f_0 v+F_{i}(z_2) &{}\quad \text {in }{\mathbb {R}}_{+},\\ v''(z_2)=2f_0 {Q}_0^1 u+{f}_0^2 v +G_{i}(z_2) &{}\quad \text {in }{\mathbb {R}}_{+},\\ u'(0)=0,\quad v' (0)=-\hat{{\mathcal {H}}}_{y_1^{i}}^e(0),\\ u(\infty )=0,\quad v(\infty )=0,&{} \end{array}\right. } \end{aligned}$$
(B.8)

where

$$\begin{aligned} \begin{aligned} |F_{i}(z_2)|&\le C(\kappa , \alpha _1, \beta _1, \Omega , {\mathcal {H}}^e) e^{-\min \{3\alpha _1, 2\beta _1\} z_2},\\ |G_{i}(z_2)|&\le C(\kappa , \alpha _1, \beta _1, \Omega , {\mathcal {H}}^e) e^{-(\alpha _1+\beta _1) z_2} \end{aligned} \end{aligned}$$

for \(i=2,3.\) As the proof of the estimates of \(p(z_2)\) and \(q(z_2)\), by applying Proposition B.2 we can obtain the decay estimates of \(\partial _{y_1^i}^i {\hat{f}}_{0}(0,z_2)\) and \(\partial _{y_1^i}^i {\hat{Q}}_{0}^1(0,z_2)\) for \(i=2,3.\)

Applying the above argument to the equations of \(\partial _{y_1^i}^i {\hat{f}}_{0}(0,z_2)\) and \(\partial _{y_1^i}^i {\hat{Q}}_{0}^1(0,z_2)\) respectively, we immediately obtain the decay estimates of \(|\partial _{y_1^i z_2^2}^{i+2}{\hat{f}}_{0}(y_1, z_2)|\) and \(|\partial _{y_1^i z_2^2}^{i+2}{\hat{{\mathbf {Q}}}}_0(y_1,z_2)|\) for \(i=0,\cdots ,3\).

Integrating from \(z_2\) to \(\infty \) on both sides of the equations of \(\partial _{y_1^i}^i {\hat{f}}_{0}(0,z_2)\) and \(\partial _{y_1^i}^i {\hat{Q}}_{0}^1(0,z_2)\) respectively, we can obtain the decay estimates of \(|\partial _{y_1^i z_2}^{i+1}{\hat{f}}_{0}(y_1, z_2)|\) and \(|\partial _{y_1^i z_2}^{i+1}{\hat{{\mathbf {Q}}}}_0(y_1,z_2)|\) for \(i=0,\ldots ,3\).

Now we have proved Proposition 2.5 for \(y_1=0.\) Replacing \(\hat{{\mathcal {H}}}^e(0)\) by \(\hat{{\mathcal {H}}}^e(y_1)\) in (B.7) and in (B.8), then noting that \(\hat{{\mathcal {H}}}^e\in C^3(\partial \Omega ),\) we see that Proposition 2.5 also holds for \(y_1\ne 0.\) Now we have completed the proof. \(\square \)

Appendix C: Derivation of system (2.20)

To derive equation (2.20) we need the local coordinate expansions introduced in [24, section 3]. Here we keep the notations in section 2. We use \({\mathfrak {R}}_i(|y_1^3|)\), \(i=1,2,\cdots \), to denote a function of \(y_1\) and \(z_2\) which is of order \((|y_1^3|)\) uniformly for \(z_2\), and use \({\mathfrak {R}}_{i}(\lambda ^k)\), \(k>0\), \(i=1,2,\cdots \), to denote a function of \(y_1\) and \(z_2\) which is of order \((\lambda ^k)\).

For the function g defined in (2.2) we have, for \(\lambda >0\) small,

$$\begin{aligned} \begin{aligned} g(z)&=1-\lambda k(0)z_2-\lambda ^2k'(0)z_1 z_2+O(\lambda ^3),\\ {1\over g(z)}&=1+\lambda k(0)z_2+\lambda ^2\left( k^2(0) z_2^2+k'(0)z_1 z_2\right) +O(\lambda ^3), \end{aligned} \end{aligned}$$
(C.1)

where \(k'(0)={\mathrm {d} k\over \mathrm {d} s}(0)={\mathrm {d} k\over \mathrm {d} y_1}(0).\) For any fixed \(z_2\ge 0\), we have the formal asymptotic expansions for \({\hat{f}}_{0}(y_1, z_2)\) and \({\hat{{\mathbf {Q}}}}_{0}(y_1, z_2)\) with respect to the variable \(y_1\) at the point \((0, z_2)\):

$$\begin{aligned} \begin{aligned} {\hat{f}}_{0}(y_1, z_2)&=f_0+y_1 \partial _{y_1} {\hat{f}}_{0}(0,z_2)+\frac{1}{2}y_1^2 \partial _{y_1^2} {\hat{f}}_{0}(0,z_2) +{\mathfrak {R}}_1(|y_1^3|),\\ {\hat{{\mathbf {Q}}}}_{0}(y_1, z_2)&={\mathbf {Q}}_0+y_1 \partial _{y_1} {\hat{{\mathbf {Q}}}}_{0}(0,z_2)+\frac{1}{2}y_1^2 \partial _{y_1^2} {\hat{{\mathbf {Q}}}}_{0}(0,z_2) +{\mathfrak {R}}_2(|y_1^3|), \end{aligned} \end{aligned}$$
(C.2)

where

$$\begin{aligned} (f_0, {\mathbf {Q}}_0)=({\hat{f}}_{0}(0,z_2), {\hat{{\mathbf {Q}}}}_{0}(0,z_2))=({\hat{f}}_{0}(0,z_2), ({\hat{Q}}_0^1(0,z_2), {\hat{Q}}_0^2(0,z_2))) \end{aligned}$$

is the solution of (2.14), \(({\hat{f}}_0(y_1, z_2), \hat{{{\textbf {Q}}}}_0(y_1, z_2))\) is the solution of (5.18).

Write

$$\begin{aligned} p(z_2):=\partial _{y_1} {\hat{f}}_{0}(0,z_2),\quad (q (z_2),0):=\partial _{y_1} {\hat{{\mathbf {Q}}}}_{0}(0,z_2). \end{aligned}$$
(C.3)

Then we take the expansions for \({\tilde{f}}\) and \({\tilde{{\mathbf {Q}}}}\) in (2.6) with respect to \(\lambda \), and have

$$\begin{aligned} {\tilde{f}}\!=\!f_0+\lambda (p z_1+f_1)+{\mathfrak {R}}_3(\lambda ^2),\quad {\tilde{{\mathbf {Q}}}}\!=\!{\mathbf {Q}}_0\!+\!\lambda ((q z_1,0)+{\mathbf {Q}}_1)+{\mathfrak {R}}_4(\lambda ^2),\nonumber \\ \end{aligned}$$
(C.4)

where \(f_1={\hat{f}}_{1}(0, z_2)\) and \({\mathbf {Q}}_1={\hat{{\mathbf {Q}}}}_{1}(0, z_2)=(Q_1^1, Q_1^2)\) are to be determined.

Firstly, we have

$$\begin{aligned} \begin{aligned} \lambda \text {curl}{\mathbf {Q}}(x)&=\frac{1}{g}\left[ \partial _{z_1} {\tilde{Q}}_2 -\partial _{z_2} (g {\tilde{Q}}_1)\right] \\&=-(Q_0^1)'+\lambda (k(0)Q_0^1-(Q_1^1)'-z_1 q'(z_2)) +{\mathfrak {R}}_5(\lambda ^2). \end{aligned} \end{aligned}$$
(C.5)

Then,

$$\begin{aligned} \begin{aligned}&\frac{1}{g}\left( \partial _{z_1} \left( \frac{1}{g}\partial _{z_1} {\tilde{f}}\right) +\partial _{z_2}\left( g \partial _{z_2} {\tilde{f}}\right) \right) \\&\quad =(f_0)''+\lambda \left( (f_1)''-k(0) (f_0)'+p''(z_2)z_1\right) +{\mathfrak {R}}_6(\lambda ^2) \end{aligned} \end{aligned}$$
(C.6)

and

$$\begin{aligned} \begin{aligned} (1-|{\tilde{f}}|^2-|{\tilde{{\mathbf {Q}}}}|^2){\tilde{f}}&=(1-|f_0|^2-|{\mathbf {Q}}_0|^2)f_0+\lambda \big ((1-|f_0|^2-|{\mathbf {Q}}_0|^2)(p z_1+f_1)\\&\quad -2f_0(f_0( p z_1+f_1)+{\mathbf {Q}}_0\cdot (( q z_1,0)+{\mathbf {Q}}_1))\big )+{\mathfrak {R}}_7(\lambda ^2), \end{aligned}\nonumber \\ \end{aligned}$$
(C.7)

where \(p=p(z_2)\) and \(q=q(z_2)\) are defined in (C.2). Using (C.5), for \(\mathcal {M}_1(\lambda z)\) and \(\mathcal {M}_2(\lambda z)\) defined by (2.3) we have

$$\begin{aligned} \begin{aligned} \mathcal {M}_1(\lambda z)&=-(Q_0^1)''-\lambda \big [(Q_1^1)''+q''(z_2) z_1-k(0) (Q_0^1)'\big ]+{\mathfrak {R}}_8(\lambda ^2),\\ \mathcal {M}_2(\lambda z)&=\lambda q'(z_2) +{\mathfrak {R}}_9(\lambda ^2). \end{aligned} \end{aligned}$$
(C.8)

Also, we have

$$\begin{aligned} |{\tilde{f}}|^2 {\tilde{{\mathbf {Q}}}}=|f_0|^2 {\mathbf {Q}}_0+\lambda \left[ 2f_0(p z_1+f_1){\mathbf {Q}}_0+|f_0|^2 ((q z_1,0)+{\mathbf {Q}}_1)\right] +{\mathfrak {R}}_{10}(\lambda ^2).\nonumber \\ \end{aligned}$$
(C.9)

We now consider the equations at the point \((0,z_2)\). We have

$$\begin{aligned} \frac{1}{g}\left( \partial _{z_1} \left( \frac{1}{g}\partial _{z_1} {\tilde{f}}\right) +\partial _{z_2}\left( g \partial _{z_2} {\tilde{f}}\right) \right) =(f_0)''+\lambda \left( (f_1)''-k(0) \partial _2 f_0\right) +{\mathfrak {R}}_{11}(\lambda ^2)\nonumber \\ \end{aligned}$$
(C.10)

and

$$\begin{aligned} \begin{aligned}&(1-|{\tilde{f}}|^2-|{\tilde{{\mathbf {Q}}}}|^2){\tilde{f}} =(1-|f_0|^2-|Q_0^1|^2)f_0\\&\quad +\lambda \big ((1-|f_0|^2-|Q_0^1|^2)f_1 -2f_0(f_0 f_1+Q_0^1 Q_1^1)\big )+{\mathfrak {R}}_{12}(\lambda ^2). \end{aligned} \end{aligned}$$
(C.11)

For \(\mathcal {M}_1(\lambda z)\) we have

$$\begin{aligned} \mathcal {M}_1(\lambda z)=-(Q_0^1)''+\lambda \big [-(Q_1^1)''+k(0) (Q_0^1)' \big ]+{\mathfrak {R}}_{13}(\lambda ^2). \end{aligned}$$
(C.12)

Also, we have

$$\begin{aligned} |{\tilde{f}}|^2 {\tilde{{\mathbf {Q}}}}=|f_0|^2 {\mathbf {Q}}_0+\lambda \left[ 2f_0 f_1 {\mathbf {Q}}_0+|f_0|^2 {\mathbf {Q}}_1\right] +{\mathfrak {R}}_{14}(\lambda ^2). \end{aligned}$$
(C.13)

Comparing with the coefficients of \(\lambda \), we obtain the equations (2.20) for the first order terms.

Appendix D: Derivation of system (2.22) and proof of (3.5)

We follow the notations used in section 2 and in appendix C. Let \({\mathfrak {R}}_{i}(\lambda ^2)\) be the terms appear in appendix C, and it has been proved in section 3 that these terms have the order \(O(\lambda ^2)\) uniformly for \(y_1\) and \(z_2\). In this section we shall expand these terms in the form

$$\begin{aligned} {\mathfrak {R}}_{i}(\lambda ^2)=\lambda ^2 R_i+{\mathfrak {R}}_{i}(\lambda ^3)\quad \quad \text {for }i=3,\cdots , 14, \end{aligned}$$

where \(R_i\) denotes a functions of \(y_1\) and \(z_2\) which is independent of \(\lambda \), and \({\mathfrak {R}}_{i}(\lambda ^3)\) denotes a function of \(y_1\) and \(z_2\) which is of the order \(O(\lambda ^3)\).

From the inner expansion (2.9) and the expansion (C.2), we have the expansions for the function \({\mathfrak {R}}_3\) and the vector field \({\mathfrak {R}}_4\) in (C.4):

$$\begin{aligned} {\mathfrak {R}}_3(\lambda ^2)=\lambda ^2\left( \frac{1}{2} z_1^2 \partial _{y_1^2 } {\hat{f}}_{0}(0,z_2) + z_1 \partial _{y_1} {\hat{f}}_{1}(0,z_2)+f_2\right) +{\mathfrak {R}}_{16}(\lambda ^3), \end{aligned}$$
(D.1)

and

$$\begin{aligned} \begin{aligned} {\mathfrak {R}}_4(\lambda ^2)&=\lambda ^2\Big ( \frac{1}{2} z_1^2 \partial _{y_1^2} {\hat{Q}}_{0}^1(0,z_2) + z_1 \partial _{y_1} {\hat{Q}}_{1}^1(0,z_2)+Q_{2}^1(0,z_2), \\&\qquad z_1 \partial _{y_1} {\hat{Q}}_{1}^2(0,z_2)+Q_{2}^2(0,z_2)\Big )+{\mathfrak {R}}_{17}(\lambda ^3), \end{aligned} \end{aligned}$$
(D.2)

where

$$\begin{aligned} ({\hat{f}}_{0}(0,z_2), {\hat{{\mathbf {Q}}}}_{0}(0,z_2))=({f}_{0}, (Q_0^1, 0)) \end{aligned}$$

is the solution of (2.14),

$$\begin{aligned} ({\hat{f}}_{1}(0,z_2), {\hat{{\mathbf {Q}}}}_{1}(0,z_2))=({f}_{1}, (Q_1^1, Q_1^2)) \end{aligned}$$

is the solution of (2.20), and

$$\begin{aligned} ({\hat{f}}_{2}(0,z_2), {\hat{{\mathbf {Q}}}}_{2}(0,z_2))=({f}_{2}, (Q_2^1, Q_2^2)) \end{aligned}$$

is to be determined now.

From (C.5), we have

$$\begin{aligned} \begin{aligned} \mathfrak {R}_5(\lambda ^2)=&\,\lambda ^2 \Big (\, \partial _{y_1} \hat{Q}_1^2+k'(0)z_1 Q_0^1+k'(0)z_1 z_2 (Q_0^1)' +k(0)\left( z_1 \partial _{y_1} \hat{Q}_0^1\big |_{y_1=0}+Q_1^1\right) \\&\quad - (Q_2^1)' +k(0)z_2\left[ z_1 \partial _{y_1 z_2} \hat{Q}_0^1\big |_{y_1=0} +(Q_1^1)'\right] -\frac{1}{2}z_1^2\partial _{y_1^2 z_2}\hat{Q}_0^1\big |_{y_1=0}\\&\quad -z_1 \partial _{y_1 z_2}\hat{Q}_1^1\big |_{y_1=0}+k(0)z_2 \left[ k(0)Q_0^1-(Q_1^1)'-z_1\partial _{y_1 z_2}\hat{Q}_0^1\big |_{y_1=0}\right] \\&\quad -(Q_0^1)'\left[ k^2(0)z_2^2 +k'(0)z_1 z_2\right] \Big ) +\mathfrak {R}_{18}(\lambda ^3).\end{aligned} \end{aligned}$$
(D.3)

Then we have the expansions for \({\mathfrak {R}}_6\) in (C.6) and for \({\mathfrak {R}}_7\) in (C.7):

$$\begin{aligned} \begin{aligned} \mathfrak {R}_6(\lambda ^2)=&\lambda ^2\Big (\, \partial _{y_1^2}\hat{f}_0\big |_{y_1=0} +\frac{1}{2}z_1^2 \partial _{z_2^2 y_1^2} \hat{f}_0\big |_{y_1=0} +z_1 \partial _{z_2^2 y_1} \hat{f}_1\big |_{y_1=0}-k(0) \left[ p' z_1+(f_1)'\right] \\&\quad +(f_2)''-k(0) z_2\left[ p'' z_1+(f_1)''\right] -(f_0)' k'(0) z_1-(f_0)'' k'(0) z_1 z_2\\&\quad +k(0) z_2 \left[ (f_1)''+p'' z_1 -k(0) (f_0)' -k(0) z_2 (f_0)''\right] \\&\quad +(f_0)''\left[ k^2(0) z_2^2+k'(0) z_1 z_2\right] \Big )+\mathfrak {R}_{19}(\lambda ^3), \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} {\mathfrak {R}}_7(\lambda ^2)&=\lambda ^2\big (\left[ \frac{1}{2}z_1^2 \partial _{ y_1^2} {\hat{f}}_0\big |_{y_1=0}+z_1 \partial _{y_1} {\hat{f}}_1\big |_{y_1=0}+f_2\right] (1-f_0^2-|{\mathbf {Q}}_0|^2)\\&\qquad +(pz_1+f_1)[-2f_0(pz_1+f_1)-2Q_0^1(q z_1+Q_1^1)-2Q_0^2 Q_1^2]\\&\qquad +f_0\left[ -(pz_1+f_1)^2-2f_0\left( \frac{1}{2}z_1^2 \partial _{ y_1^2} {\hat{f}}_0\big |_{y_1=0}+z_1 \partial _{y_1} {\hat{f}}_1\big |_{y_1=0}+f_2\right) \right. \\&\qquad -(q z_1+Q_1^1)^2 -2Q_0^1\left( \frac{1}{2}z_1^2 \partial _{ y_1^2} {\hat{Q}}_0^1\big |_{y_1=0} +z_1 \partial _{y_1} {\hat{Q}}_1^1\big |_{y_1=0}+Q_2^1\right) \\&\qquad \left. -(Q_1^2)^2-2Q_0^2(z_1 \partial _{y_1} {\hat{Q}}_1^2\big |_{y_1=0}+Q_2^2)\right] \big )+{\mathfrak {R}}_{20}(\lambda ^3). \end{aligned} \end{aligned}$$

From (D.1), (D.2) and (C.8), we see that

$$\begin{aligned} \begin{aligned} \mathfrak {R}_8(\lambda ^2) =&\lambda ^2\Big (\, \partial _{z_2 y_1}\hat{Q}_1^2\big |_{y_1=0} -\frac{1}{2}z_1^2 \partial _{z_2^2 y_1^2} \hat{Q}_2^1\big |_{y_1=0}-z_1 \partial _{z_2^2 y_1} \hat{Q}_1^1\big |_{y_1=0} +k'(0) z_1 z_2(Q_0^1)''\\&\quad -(Q_2^1)''+2k(0) \left[ q' z_1+(Q_1^1)'\right] +k(0) z_2\left[ q'' z_1+(Q_1^1)''\right] +k'(0) z_1(Q_0^1)'\\&\quad -k(0) \left[ q'z_1+(Q_1^1)'-k(0) Q_0^1\right] -(Q_0^1)''\left[ k^2(0) z_2^2+k'(0) z_1 z_2\right] \\&\quad -k(0) z_2\left[ q'' z_1+(Q_1^1)''-k(0) (Q_0^1)' -k(0) z_2 (Q_0^1)''\right] \Big ) +\mathfrak {R}_{21}(\lambda ^3) \end{aligned} \end{aligned}$$
(D.4)

and

$$\begin{aligned} \begin{aligned} \mathfrak {R}_9(\lambda ^2) =&\lambda ^2 \Big (\, z_1\partial _{z_2 y_1^2}\hat{Q}_0^1\big |_{y_1=0}+\partial _{z_2 y_1}\hat{Q}_1^1\big |_{y_1=0}-k(0) q -k'(0) Q_0^1\\&\quad +k(0) z_2 q'\Big )+\mathfrak {R}_{22}(\lambda ^3). \end{aligned} \end{aligned}$$
(D.5)

From (D.1), (D.2) and (C.9), we have

$$\begin{aligned} \begin{aligned} \mathfrak {R}_{10}(\lambda ^2) =&\lambda ^2 \Big (\left[ (p z_1+f_1)^2+2f_0\left( \frac{1}{2}z_1^2 \partial _{y_1^2} \hat{f}_0\big |_{y_1=0}+z_1 \partial _{y_1} \hat{f}_1\big |_{y_1=0}+f_2\right) \right] {\mathbf {Q}}_0\\&\quad +f_0^2\left( \frac{1}{2}z_1^2 \partial _{y_1 y_1} \hat{Q}_0^1\big |_{y_1=0}+z_1\partial _{y_1} \hat{Q}_1^1\big |_{y_1=0}+Q_2^1, z_1\partial _{y_1} \hat{Q}_1^2\big |_{y_1=0}+Q_2^2\right) \\&\quad +2f_0 (p z_1+f_1)\left[ (q z_1,0)+{\mathbf {Q}}_1\right] \Big )+\mathfrak {R}_{23}(\lambda ^3). \end{aligned}\nonumber \\ \end{aligned}$$
(D.6)

We now consider the equations at the point \((0, z_2).\) From the expression of \({\mathfrak {R}}_{6}(\lambda ^3)\), it follows that,

$$\begin{aligned} {\mathfrak {R}}_{11}(\lambda ^2) =\lambda ^2 \left( \partial _{y_1^2} {\hat{f}}_0\big |_{y_1=0}+ f_2^{''}-k(0) (f_1)'-k^2(0) z_2 (f_0)'\right) +{\mathfrak {R}}_{24}(\lambda ^3).\qquad \end{aligned}$$
(D.7)

From the expression of \({\mathfrak {R}}_{7}(\lambda ^3)\), we have

$$\begin{aligned} \begin{aligned} \mathfrak {R}_{12}(\lambda ^2) =&\lambda ^2\Big (\, f_2(1-3f_0^2-|{\mathbf {Q}}_0|^2)+f_0\left[ -f_1^2-(Q_1^1)^2-(Q_1^2)^2\right] \\&\quad -2f_0 Q_0^1Q_2^1+f_1\left[ -2f_0f_1-2Q_0^1Q_1^1\right] \Big )+\mathfrak {R}_{25}(\lambda ^3). \end{aligned}\nonumber \\ \end{aligned}$$
(D.8)

From the expressions of \({\mathfrak {R}}_{8}(\lambda ^3)\) and \({\mathfrak {R}}_{9}(\lambda ^3)\), we have

$$\begin{aligned} \begin{aligned} \mathfrak {R}_{13}(\lambda ^2) =&\lambda ^2\Big (\partial _{z_2 y_1}\hat{Q}_1^2\big |_{y_1=0}-(Q_2^1)''+k(0) (Q_1^1)' +k(0) Q_0^1\\&\quad +k^2(0) z_2(Q_0^1)' \Big )+\mathfrak {R}_{26}(\lambda ^3) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathfrak {R}_{14}(\lambda ^2) =\lambda ^2 \left( \partial _{z_2 y_1}\hat{Q}_1^1\big |_{y_1=0}-k(0) q -k'(0) Q_0^1+k(0) z_2q'\right) +\mathfrak {R}_{27}(\lambda ^3). \end{aligned}$$

From \({\mathfrak {R}}_{10}(\lambda ^3)\), it follows that

$$\begin{aligned} \begin{aligned} {\mathfrak {R}}_{15}(\lambda ^2) =\lambda ^2 ((f_1^2+2f_0 f_2){\mathbf {Q}}_0+2f_0 f_1{\mathbf {Q}}_1+f_0^2{\mathbf {Q}}_2)+{\mathfrak {R}}_{28}(\lambda ^3). \end{aligned} \end{aligned}$$

Comparing with the coefficients of \(\lambda ^2\), we obtain the equations (2.22) for the second order terms.

Proof of Lemma 3.1

Step 1. From (3.2), we can see that

$$\begin{aligned} {\mathbf {b}}(x,\lambda )=(0,{{\textbf {0}}})\quad \text {for all }x\in \Omega \backslash \sigma _2, \end{aligned}$$

where \(\sigma _n\) is defined by (3.1). Then (3.5) holds for \(x\in \Omega \backslash \sigma _2\).

Step 2. We show the estimate (3.5) when \(x\in \sigma _4.\) We consider this problem in a neighborhood \({\mathcal {U}}\) of \(X_0\in \partial \Omega \). We follow the notation used in section 2 and in appendix C.

To obtain \({\tilde{{\mathbf {b}}}}\), we replace the expressions of \({\tilde{f}}\) and \({\tilde{{\mathbf {Q}}}}\) by

$$\begin{aligned} {\hat{f}}_{0}(y_1, z_2) +\lambda {\hat{f}}_{1}(y_1, z_2)+\lambda ^2 {\hat{f}}_{2}(y_1, z_2)\quad \text {and}\quad {\hat{{\mathbf {Q}}}}_{0}(y_1, z_2) +\lambda {\hat{{\mathbf {Q}}}}_{1}(y_1, z_2)+\lambda ^2 {\hat{{\mathbf {Q}}}}_{2}(y_1, z_2) \end{aligned}$$

under the \(z-\) coordinate system in (C.4) respectively.

We first estimate \({\tilde{b}}_1(z_1, z_2,\lambda ),\) where \({\tilde{b}}_1(z_1, z_2, \lambda )\) is the representation of \(b_1(x,\lambda )\) under the z-coordinate system. At the point \((0, z_2),\) from (D.7) and (D.8) we have

$$\begin{aligned} \begin{aligned} \mathfrak {R}_{24}(\lambda ^3)=&\lambda ^3 \kappa ^{-2}\Big (\, g_0^{-3}k'(0) z_2 \left[ \partial _{y_1} \hat{f}_0\big |_{y_1=0}+\lambda \partial _{y_1} \hat{f}_1\big |_{y_1=0}+\lambda ^2 \partial _{y_1} \hat{f}_2\big |_{y_1=0}\right] \\&\qquad \quad +g_0^{-2}\left[ (1+g_0)k(0) z_2 \partial _{y_1^2} \hat{f}_0\big |_{y_1=0}+\partial _{y_1^2} \hat{f}_1\big |_{y_1=0}+ \lambda \partial _{y_1^2} \hat{f}_2\big |_{y_1=0}\right] \\ {}&\qquad \quad -g_0^{-1}\left[ k(0)(f_0)' -\lambda k^3(0)z_2^2(f_1)'-\lambda k^2(0)z_2(f_2)'\right] \\&\qquad \quad -k^3(0) z_2^2(f_0)'-k^2(0) z_2(f_1)'-k(0) (f_2)'\Big )\end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \mathfrak {R}_{25}(\lambda ^3)=&-\lambda ^3 \Big (\, (f_1 +\lambda f_2)\Big [2 Q_0^1Q_2^1+2 f_0 f_2+f_1^2+(Q_1^1)^2+(Q_1^2)^2\Big ]\\&\qquad \quad +2f_2(f_0 f_1+Q_0^1 Q_1^1)+(f_0+\lambda f_1 +\lambda ^2 f_2)\Big [2 Q_1^1Q_2^1+2 f_1 f_2\\&\qquad \quad +2 Q_1^2 Q_2^2+\lambda \left( f_2^2+(Q_1^1)^2+(Q_1^2)^2\right) \Big ]\Big ), \end{aligned} \end{aligned}$$

where \(k_0=k(0)\) is the curvature of \(\partial \Omega \) at the point \(X_0\), \(k_0'={\mathrm {d} k\over \mathrm {d} s}(0)= {\mathrm {d} k\over \mathrm {d} y_1}(0)\),

$$\begin{aligned} g_0=g(0, \lambda z_2)=1-\lambda k(0) z_2. \end{aligned}$$

We see that \({\mathfrak {R}}_{24}(\lambda ^3)\) and \({\mathfrak {R}}_{25}(\lambda ^3)\) are the polynomials of \({\hat{f}}_{0}, {\hat{f}}_{1},{\hat{f}}_{2}, {\hat{{\mathbf {Q}}}}_{0}, {\hat{{\mathbf {Q}}}}_{1}, {\hat{{\mathbf {Q}}}}_{2}\) and their derivatives up to the order 2 at \((0, z_2)\). From Proposition 2.5, Proposition 2.7 and Proposition 2.9, it follows that

$$\begin{aligned} |{\mathfrak {R}}_{24}(\lambda ^3)|+|{\mathfrak {R}}_{25}(\lambda ^3)|\le C(\Omega ,{\mathcal {H}}^e, \kappa )\lambda ^3. \end{aligned}$$

For any \(x\in \sigma _4\), let \(\psi \) be defined by (2.1), \(x=\psi (y_1,y_2)\), \(z_1=y_1/\lambda , z_2=y_2/\lambda .\) Then \({\tilde{b}}_1(0, z_2, \lambda )={\mathfrak {R}}_{24}(\lambda ^3)+{\mathfrak {R}}_{25}(\lambda ^3).\) Note that \({\hat{f}}_{0}, {\hat{f}}_{1},{\hat{f}}_{2}, {\hat{{\mathbf {Q}}}}_{0}, {\hat{{\mathbf {Q}}}}_{1}, {\hat{{\mathbf {Q}}}}_{2}\) and their derivatives up to the order 2 are continuously differentiable with respect to the parameter \(y_1\) (by applying the continuous differentiability of solutions with respect to parameters in the theory of ODEs). Therefore, for each \(z_1\ne 0,\) we also have

$$\begin{aligned} |{\tilde{b}}_1(z_1, z_2,\lambda )|\le C(\Omega ,{\mathcal {H}}^e, \kappa )\lambda ^3. \end{aligned}$$

We now estimate \({\tilde{{\mathbf {b}}}}_2=({\tilde{b}}_2^1, {\tilde{b}}_2^2).\) At the point \((y_1, z_2)\) with \(y_1=\lambda z_2\), from (D.4) we have

$$\begin{aligned} \begin{aligned} \tilde{\mathfrak {R}}_{21}(\lambda ^3)=&\lambda ^3\Big [s_3+\lambda k(y_1)z_2 (s_2+\lambda s_3) +\lambda ^2 k^2(y_1) z_2^2(s_1+\lambda s_2+\lambda ^2 s_3) \\&\quad +\lambda ^3 k^3(y_1) z_2^3 g^{-1}(-\partial _{z_2^2} \hat{Q}_0^1 +\lambda s_1+\lambda ^2 s_2+\lambda ^3 s_3)\Big ]\\&+\lambda ^3\Big [k(y_1)s_5 +2\lambda ^2 k^2(y_1) z_2 (s_4+\lambda s_5)\\&\qquad +\lambda ^3 k^3(y_1) z_2^2 g^{-2}(2g+1)(-\partial _{z_2}\hat{Q}_0^1 +\lambda s_4+\lambda ^2 s_5)\Big ], \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} s_1&=k(y_1){\hat{Q}}_0^1+k(y_1) z_2 \partial _{z_2^2} {\hat{Q}}_0^1 +k(y_1)\partial _{z_2}{\hat{Q}}_0^1-\partial _{z_2^2}{\hat{Q}}_1^1, \\ s_2&=\partial _{y_1 z_2}{\hat{Q}}_1^2+k(y_1){\hat{Q}}_1^1+k(y_1) z_2 \partial _{z_2^2} {\hat{Q}}_1^1-\partial _{z_2^2}{\hat{Q}}_2^1+k(y_1)\partial _{z_2} {\hat{Q}}_1^1,\\ s_3&=\partial _{y_1 z_2}{\hat{Q}}_2^2+k(y_1){\hat{Q}}_2^1+k(y_1) z_2 \partial _{z_2^2} {\hat{Q}}_2^1+k(y_1)\partial _{z_2} {\hat{Q}}_2^1 \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} s_4&=k(y_1)z_2 \partial _{z_2} \hat{Q}_0^1+k(y_1)\hat{Q}_0^1-\partial _{z_2}\hat{Q}_1^1,\\ s_5&=\partial _{y_1}\hat{Q}_1^2+k(y_1)\hat{Q}_1^1+k(y_1) z_2 \partial _{z_2} \hat{Q}_1^1-\partial _{z_2}\hat{Q}_2^1 \lambda \Big (\partial _{y_1}\hat{Q}_2^2+k(y_1)\hat{Q}_2^1+k(y_1) z_2 \partial _{z_2} \hat{Q}_2^1\Big ). \end{aligned} \end{aligned}$$

From (D.5) we have

$$\begin{aligned} \begin{aligned} \tilde{\mathfrak {R}}_{22}(\lambda ^3)=&-\lambda ^3\Big [s_7+2 k(y_1)z_2(s_6+\lambda s_7) + k^2(y_1) z_2^2 g^{-2}(2g+1)(- \partial _{y_1 z_2}\hat{Q}_0^1+\lambda s_6+\lambda ^2 s_7)\Big ]\\&-\lambda ^3\Big [ k'(y_1) z_2 s_8+ k(y_1)k'(y_1) z_2^2 g^{-3}(1+g+g^2)(-\partial _{z_2} \hat{Q}_0^1+\lambda s_8)\Big ],\\ \end{aligned} \end{aligned}$$

where g is defined by (2.2),

$$\begin{aligned} \begin{aligned} s_6=&k(y_1)\partial _{y_1} \hat{Q}_0^1+k'(y_1) \hat{Q}_0^1+\partial _{y_1 z_2}\hat{Q}_0^1 -\partial _{y_1 z_2}\hat{Q}_1^1+k'(y_1) z_2\partial _{z_2} \hat{Q}_0^1,\\ s_7=&\partial _{y_1^2}\hat{Q}_1^2+\lambda \partial _{y_1^2}\hat{Q}_2^2+k(y_1) \partial _{y_1}\hat{Q}_1^1 +\lambda k(y_1)\partial _{y_1}\hat{Q}_2^1+k'(y_1)\hat{Q}_1^1+\lambda k'(y_1)\hat{Q}_2^1\\&+k(y_1) z_2 \partial _{y_1 z_2}\hat{Q}_1^1-\partial _{y_1 z_2}\hat{Q}_2^1+\lambda k(y_1)z_2 \partial _{y_1 z_2}\hat{Q}_2^1+k'(y_1)z_2 (\partial _{z_2} \hat{Q}_1^1+\lambda \partial _{z_2}\hat{Q}_2^1),\end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} s_8=&k(y_1)z_2 \partial _{z_2} \hat{Q}_0^1+k(y_1)\hat{Q}_0^1-\partial _{z_2}Q_1^1\\&+\lambda \Big (\partial _{y_1}\hat{Q}_1^2+k(y_1)\hat{Q}_1^1+k(y_1) z_2 \partial _{z_2} \hat{Q}_1^1-\partial _{z_2}\hat{Q}_2^1\Big )\\&+\lambda ^2\Big (\partial _{y_1}\hat{Q}_2^2+k(y_1)\hat{Q}_2^1+k(y_1) z_2 \partial _{z_2} \hat{Q}_2^1\Big ).\end{aligned} \end{aligned}$$

From (D.6) we have

$$\begin{aligned} \begin{aligned} \tilde{\mathfrak {R}}_{23}^1(\lambda ^3)&=\lambda ^3 \Big [(\hat{Q}_0^1+\lambda \hat{Q}_1^1+\lambda ^2 \hat{Q}_2^1)(2 \hat{f}_1 \hat{f}_2+\lambda \hat{f}_2^2) +(\hat{Q}_1^1+\lambda \hat{Q}_2^1)(\hat{f}_1^2 +2\hat{f}_0 \hat{f}_2)+2\hat{f}_0 \hat{f}_1 \hat{Q}_2^1\Big ], \\ \tilde{\mathfrak {R}}_{23}^2(\lambda ^3)&=\lambda ^3\Big [(\lambda \hat{Q}_1^2+\lambda ^2 \hat{Q}_2^2)(2 \hat{f}_1 \hat{f}_2+\lambda \hat{f}_2^2)+(\hat{Q}_1^2+\lambda \hat{Q}_2^2)(\hat{f}_1^2 +2\hat{f}_0 \hat{f}_2)+2\hat{f}_0 \hat{f}_1 \hat{Q}_2^2\Big ].\end{aligned} \end{aligned}$$

Then

$$\begin{aligned} {\tilde{b}}_2^1=-\tilde{{\mathfrak {R}}}_{21}-\tilde{{\mathfrak {R}}}_{23}^1,\quad {\tilde{b}}_2^2=-\tilde{{\mathfrak {R}}}_{22}-\tilde{{\mathfrak {R}}}_{23}^2. \end{aligned}$$

We see that \({\tilde{b}}_2^1\) and \( {\tilde{b}}_2^2\) are the polynomials of \({\hat{f}}_{0}, {\hat{f}}_{1},{\hat{f}}_{2}, {\hat{{\mathbf {Q}}}}_{0}, {\hat{{\mathbf {Q}}}}_{1}, {\hat{{\mathbf {Q}}}}_{2}\) and their derivatives up to the order 2. Using Proposition 2.5, Proposition 2.7 and Proposition 2.9 again, we have

$$\begin{aligned} \Vert {\tilde{{\mathbf {b}}}}_2\Vert _{C^0(\psi ^{-1}(\sigma _4))} +\Vert {{\,\mathrm{div}\,}}_z{\tilde{{\mathbf {b}}}}_2\Vert _{C^1(\psi ^{-1}(\sigma _4))} \le C(\Omega ,{\mathcal {H}}^e, \kappa )\lambda ^3. \end{aligned}$$

where \(\sigma _4\) is defined in (3.1), \(\psi \) is defined by (2.1). Thus, we have (3.5) for \(x\in \sigma _4\) by the scaling argument.

Step 3. From Proposition 2.5, Proposition 2.7 and Proposition 2.9, we see that, each component of \({\tilde{{\mathbf {b}}}}(z,\lambda )\) is a linear combinations of exponentially decaying terms with respect to \(z_2\). Therefore, for \(x\in \sigma _2\backslash \sigma _4\) we also have (3.5) for small \(\lambda \).

We now finish the proof of (3.5). \(\square \)

Appendix E: Derivation of the boundary condition (3.8)

To derive the boundary condition of \(R_{f}\), we use the boundary condition of \({\hat{f}}_{0}\) in (5.18), that of \({\hat{f}}_{1}\) in (5.19), and that of \({\hat{f}}_{2}\) (see (2.22) when \(y_1=0\)), and find

$$\begin{aligned} \frac{\partial R_{f}}{\partial {\mathbf {n}}}=\frac{\partial f}{\partial {\mathbf {n}}}+\frac{\partial }{\partial z_2}\Big (\hat{f}_{0}(y_1, z_2) +\lambda \hat{f}_{1}(y_1, z_2)+\lambda ^2 \hat{f}_{2}(y_1, z_2)\Big )\Big |_{z_2=0}=0. \end{aligned}$$

To derive the boundary condition for \({\mathbf {R}}_{{\mathbf {Q}}}\), we first consider the value of \(\lambda \,\text {curl}{\mathbf {R}}_{{\mathbf {Q}}}\) at \(X_0\in \partial \Omega \). We keep the notation used in section 2. We use equality (C.5) in appendix C with \({\mathbf {Q}}(x)\) replaced by \({\mathbf {Q}}_{\mathrm ap}(x)\), and use equality (D.3) in appendix D. Then we have

$$\begin{aligned} \begin{aligned} \lambda \,\text {curl}\, {\mathbf {Q}}_{\mathrm ap}(X_0)&=\Big (-\partial _2 Q_0^1+\lambda (k_0 Q_0^1-\partial _2 Q_1^1) +\lambda ^2 (\partial _{y_1}\hat{Q}_1^2\big |_{y_1=0}+k_0 Q_1^1-\partial _2Q_2^1)\\&+\lambda ^3 (k_0 Q_2^1+\partial _1 Q_2^2)\Big )\Big |_{z_2=0}, \end{aligned} \end{aligned}$$

where \(k_0\) is the curvature of \(\partial \Omega \) at \(X_0\). Then we use the boundary condition of \(Q_0^1\) in (2.14), the boundary condition of \((Q_1^1, Q_1^2)\) in (2.20), and that of \((Q_2^1, Q_2^2)\) in (2.22) to get

$$\begin{aligned} \lambda \text {curl}{\mathbf {Q}}_{\mathrm ap}(X_0) ={\mathcal {H}}^e(X_0)+\lambda ^3 (k_0 Q_2^1+\partial _1 Q_2^2)\big )\Big |_{z_2=0}. \end{aligned}$$

Similarly, for any \(x\in \partial \Omega ,\) we also have

$$\begin{aligned} \lambda \text {curl}{\mathbf {Q}}_{\mathrm ap}(x)={\mathcal {H}}^e(x)-{\mathcal {B}}_3(x)\quad \text {on }\partial \Omega , \end{aligned}$$
(E.1)

where

$$\begin{aligned} \mathcal {B}_3(x)=-\lambda ^3 \Big (k(x) \hat{Q}_2^1(y_1,z_2)+\partial _1 \hat{Q}_2^2(y_1,z_2)\Big )\Big |_{z_2=0},\end{aligned}$$
(E.2)

k(x) is the curvature of \(\partial \Omega \) at x, \(z_2=y_2/\lambda ,\) \(x=\psi (y_1,y_2)\) and \(\psi \) is defined by (2.1). From Proposition 2.9, we have

$$\begin{aligned} \Vert {\mathcal {B}}_3\Vert _{C^2(\partial \Omega )}\le C\left( \Omega , {\mathcal {H}}^e\right) \lambda ^3. \end{aligned}$$
(E.3)

Combining (E.1) with the boundary condition \(\lambda \text {curl}{\mathbf {Q}}={\mathcal {H}}^e\) on \(\partial \Omega \), we immediately obtain that

$$\begin{aligned} \lambda \,\text {curl}{\mathbf {R}}_{{\mathbf {Q}}}={\mathcal {B}}_3\quad \text {on }\partial \Omega . \end{aligned}$$

Now we compute the value of \({\mathbf {n}}\cdot {\mathbf {R}}_{{\mathbf {Q}}}\) on \(\partial \Omega \). We first calculate the value of \(f_{\mathrm ap}^2 {\mathbf {n}}\cdot {\mathbf {Q}}_{\mathrm ap}(x)\) at \(X_0\in \partial \Omega \). From (2.21) and (2.23), we have

$$\begin{aligned} |f_0|^2 Q_1^2\big |_{z_2=0}=\partial _{y_1 z_2} {\hat{Q}}_{0}^1\big |_{y_1=0, z_2=0}=\hat{{\mathcal {H}}}^e_{y_1}(0), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} (|f_0|^2 Q_2^2+2 f_0 f_1 Q_1^2)\big |_{z_2=0}&=-(\partial _{z_2 y_1}{\hat{Q}}_1^1 -\partial _{y_1}(k {\hat{Q}}_{0}^1))\big |_{y_1=0, z_2=0}\\&\quad =-\partial _{y_1}(\partial _{z_2 }{\hat{Q}}_1^1 -(k {\hat{Q}}_{0}^1))\big |_{y_1=0, z_2=0}=0. \end{aligned} \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned} |f_{\mathrm ap}|^2 {\mathbf {n}}\cdot {\mathbf {Q}}_{\mathrm ap}(X_0)&=-(f_0+\lambda f_1+\lambda ^2 f_2)^2(\lambda Q_1^2+\lambda ^2 Q_2^2)\\&=-\lambda \hat{{\mathcal {H}}}^e_{y_1}(0) +\lambda ^3 \tilde{{\mathfrak {R}}}_2(y_1, z_2)\Big |_{y_1=0, z_2=0}, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \tilde{\mathfrak {R}}_2(y_1, z_2)=&(f_1^2+2f_0 f_2)Q_1^2+2f_0 f_1 Q_2^2 +\lambda \Big (2f_1 f_2 Q_1^2+(f_1^2+2f_0 f_2)Q_2^2\Big )\\&+\lambda ^2 \Big (f_2^2 Q_1^2+2f_1 f_2 Q_2^2\Big )+\lambda ^3 f_2^2 Q_2^2.\end{aligned} \end{aligned}$$

Similarly, for any \(x\in \partial \Omega ,\) we also have

$$\begin{aligned} f_{\mathrm ap}^2 {\mathbf {n}}\cdot {\mathbf {Q}}_{\mathrm ap}(x)=-\lambda \nabla _{\mathrm {tan}} ({\mathcal {H}}^e)(x)-{\mathcal {B}}_4(x), \end{aligned}$$

where

$$\begin{aligned} {\mathcal {B}}_4(x)=\lambda ^3 \tilde{{\mathfrak {R}}}_2(y_1, z_2)\Big |_{z_2=0}, \end{aligned}$$
(E.4)

\(z_2=y_2/\lambda ,\) \(x=\psi (y_1,y_2)\), and \(\psi \) is defined by (2.1). From Proposition 2.5, Proposition 2.7 and Proposition 2.9, we have

$$\begin{aligned} \Vert {\mathcal {B}}_4\Vert _{C^2(\partial \Omega )}\le C\left( \Omega , {\mathcal {H}}^e\right) \lambda ^3. \end{aligned}$$
(E.5)

From the second and the third equations in (1.1), it follows that

$$\begin{aligned} f^2 {\mathbf {n}}\cdot {\mathbf {Q}}=-\lambda ^2{\mathbf {n}}\cdot \text {curl}^2 {\mathbf {Q}}=-\lambda \nabla _{\mathrm {tan}} (\lambda \text {curl}{\mathbf {Q}}) =-\lambda \nabla _{\mathrm {tan}}({\mathcal {H}}^e). \end{aligned}$$

This gives that

$$\begin{aligned} \nu \cdot {\mathbf {R}}_{{\mathbf {Q}}} =f_{\mathrm ap}^{-2}\left[ \mathcal {B}_4 +\lambda |f|^{-2}(|f|^2-|f_{\mathrm ap}|^2)\nabla _{\mathrm {tan}}(\mathcal H^e)\right] :=\mathcal {B}_5. \end{aligned}$$
(E.6)

Summarizing, we obtain the boundary conditions (3.8) for system (3.7).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, XB., Xiang, X. On the shape of Meissner solutions to the 2-dimensional Ginzburg–Landau system. Math. Ann. 387, 541–613 (2023). https://doi.org/10.1007/s00208-022-02460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02460-2

Mathematics Subject Classification

Navigation