Skip to main content
Log in

Product formulas and convolutions for Laplace–Beltrami operators on product spaces: beyond the trivial case

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce the notion of a family of convolution operators associated with a given elliptic partial differential operator. Such a convolution structure is shown to exist for a general class of Laplace–Beltrami operators on product manifolds endowed with warped Riemannian metrics. This structure gives rise to a convolution semigroup representation for the Markovian semigroup generated by the Laplace–Beltrami operator. We provide several examples on the product \({\mathbb {R}}^+ \times {\mathbb {T}}\), and include a study of product formulas and convolution structures generated by elliptic operators on \({\mathbb {R}}^+_0 \times I\) (I being an interval).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Convolution semigroups of probability measures on Gelfand pairs, revisited. Commun. Stoch. Anal. 10(4), Article 6 (2016)

    MathSciNet  Google Scholar 

  2. Atkinson, F.V., Mingarelli, A.B.: Multiparameter Eigenvalue Problems—Sturm–Liouville Theory. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  3. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361, 1963–1999 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bass, R.F., Hsu, P.: Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Ann. Probab. 19(2), 486–508 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Berezansky, Y.M., Kalyuzhnyi, A.A.: Harmonic Analysis in Hypercomplex Systems. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  6. Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups. Walter de Gruyter, Berlin (1994)

    MATH  Google Scholar 

  7. Boscain, U., Neel, R.W.: Extensions of Brownian motion to a family of Grushin-type singularities. Electron. Commun. Probab. 25(29), 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Boscain, U., Prandi, D.: Self-adjoint extensions and stochastic completeness of the Laplace–Beltrami operator on conic and anticonic surfaces. J. Differ. Equ. 260, 3234–3269 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Boscain, U., Prandi, D., Seri, M.: Spectral analysis and the Aharonov–Bohm effect on certain almost-Riemannian manifolds. Commun. Partial Differ. Equ. 41(1), 32–50 (2016). https://doi.org/10.1080/03605302.2015.1095766

    Article  MathSciNet  MATH  Google Scholar 

  10. Browne, P.J.: A singular multi-parameter eigenvalue problem in second order ordinary differential equations. J. Differ. Equ. 12, 81–94 (1972)

    MathSciNet  MATH  Google Scholar 

  11. Browne, P.J.: Abstract multiparameter theory I. J. Math. Anal. Appl. 60(1), 259–273 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Chebli, H.: Sturm–Liouville hypergroups. In: Applications of Hypergroups and Related Measure Algebras: A Joint Summer Research Conference on Applications of Hypergroups and Related Measure Algebras, July 31–August 6, 1993, pp. 71–88. American Mathematical Society, Providence RI, Seattle (1995)

  13. Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. In: Geometry of the Laplace Operator, Proceedings of Symposia in Pure Mathematics, vol. XXXVI, pp. 91–146. American Mathematical Society, Providence (1980)

  14. Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds. World Scientific, Singapore (2017)

    MATH  Google Scholar 

  15. Choulli, M., Kayser, L., Ouhabaz, E.M.: Observations on Gaussian upper bounds for Neumann heat kernels. Bull. Aust. Math. Soc. 92, 429–439 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Courant, R.: Methods of Mathematical Physics—Vol II: Partial Differential Equations. Wiley, New York (1962)

    MATH  Google Scholar 

  17. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  18. Donnelly, H.: Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds. J. Funct. Anal. 187(1), 247–261 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Dunford, N., Schwartz, J.T.: Linear Operators—Part II: Spectral Theory. Wiley, New York (1963)

    MATH  Google Scholar 

  20. Faierman, M.: The completeness and expansion theorems associated with the multi-parameter eigenvalue problem in ordinary differential equations. J. Differ. Equ. 5, 197–213 (1969)

    MathSciNet  MATH  Google Scholar 

  21. Folland, G.B.: A Course in Abstract Harmonic Analysis, 2nd edn. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  22. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter De Gruyter, Berlin (2011)

    MATH  Google Scholar 

  23. Fukushima, M.: On general boundary conditions for one-dimensional diffusions with symmetry. J. Math. Soc. Japan 66(1), 289–316 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Gårding, L.: Application of the theory of direct integrals of Hilbert spaces to some integral and differential operators, Lect. Ser. Inst. Fluid Dyn. Appl. Math. 11 (1954)

  25. Gelfand, I.M., Naimark, M.A.: An analog of Plancherel’s formula for the complex unimodular group. Dokl. Akad. Nauk SSSR 63, 609–612 (1948)

    MATH  Google Scholar 

  26. Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40(3), 1212–1284 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Harish-Chandra: Spherical functions on a semisimple Lie group, I. Am. J. Math. 80(2), 241–310 (1958)

  28. Harish-Chandra: Spherical functions on a semisimple Lie group, II. Am. J. Math. 80(3), 553–613 (1958)

  29. Helgason, S.: Geometric Analysis on Symmetric Spaces, 2nd edn. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  30. Hirschman, I.I.: Variation diminishing Hankel transforms. J. Anal. Math. 8, 307–336 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18(1), 1–101 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Kingman, J.F.C.: Random walks with spherical symmetry. Acta Math. 109, 11–53 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A., Koornwinder, T.H., Schempp, W. (eds.) Special Functions: Group Theoretical Aspects and Applications, pp. 1–85. Reidel, Dordrecht (1984)

    Google Scholar 

  34. Koornwinder, T.H., Schwartz, A.L.: Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle. Constr. Approx. 13(4), 537–567 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Laine, T.P.: The product formula and convolution structure for the generalized Chebyshev polynomials. SIAM J. Math. Anal. 11, 133–146 (1980)

    MathSciNet  MATH  Google Scholar 

  36. Liao, M.: Invariant Markov Processes Under Lie Group Actions. Springer, Cham (2018)

    MATH  Google Scholar 

  37. Linetsky, V.: The spectral decomposition of the option value. Int. J. Theor. Appl. Finance 7(3), 337–384 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Linetsky, V.: The spectral representation of Bessel processes with constant drift: applications in queuing and finance. J. Appl. Probab. 41(2), 327–344 (2004)

    MathSciNet  MATH  Google Scholar 

  39. McGillivray, I.: A recurrence condition for some subordinated strongly local Dirichlet forms. Forum Math. 9(2), 229–246 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Nessibi, M.M., Trimèche, K.: Inversion of the Radon transform on the Laguerre hypergroup by using generalized wavelets. J. Math. Anal. Appl. 208(2), 337–363 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

  42. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  43. Prandi, D., Rizzi, L., Seri, M.: Quantum confinement on non-complete Riemannian manifolds. J. Spectr. Theory 8, 1221–1280 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Rentzsch, C.: A Lévy Khintchine type representation of convolution semigroups on commutative hypergroups. Probab. Math. Stat. 18(1), 185–198 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Rentzsch, C., Voit, M.: Lévy processes on commutative hypergroups. In: Budzban, G., Feinsilver, P., Mukherjea, A. (eds.) Probability on Algebraic Structures: AMS Special Session on Probability on Algebraic Structures, March 12–13, 1999, Gainesville, Florida. American Mathematical Society, Providence RI (2000)

    Google Scholar 

  46. Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  47. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  48. Simmons, G.F.: Introduction to Topology and Modern Analysis. McGraw-Hill, New York (1963)

    MATH  Google Scholar 

  49. Sleeman, B.D.: Multiparameter spectral theory and separation of variables. J. Phys. A 41(1), 015209 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Sousa, R., Guerra, M., Yakubovich, S.: On the product formula and convolution associated with the index Whittaker transform. J. Math. Anal. Appl. 475(1), 939–965 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Sousa, R., Guerra, M., Yakubovich, S.: The hyperbolic maximum principle approach to the construction of generalized convolutions. In: Agarwal, P., Agarwal, R.P., Ruzhansky, M. (eds.) Special Functions and Analysis of Differential Equations. CRC Press, Boca Raton (2020)

    Google Scholar 

  52. Sousa, R., Guerra, M., Yakubovich, S.: A unified construction of product formulas and convolutions for Sturm–Liouville operators. Anal. Math. Phys. 11, Art.no. 87 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Taylor, M.E.: Fourier series on compact Lie groups. Proc. Am. Math. Soc. 19(5), 1103–1105 (1968)

    MathSciNet  MATH  Google Scholar 

  54. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-order Differential Equations. Clarendon, Oxford (1962)

    MATH  Google Scholar 

  55. Trimèche, K.: Generalized transmutation and translation operators associated with partial differential operators. In: Applications of Hypergroups and Related Measure Algebras: A Joint Summer Research Conference on Applications of Hypergroups and Related Measure Algebras, July 31–August 6, 1993, Seattle, WA, pp. 71–88. American Mathematical Society, Providence (1995)

  56. Trimèche, K.: Generalized Wavelets and Hypergroups. Gordon and Breach, Amsterdam (1997)

    MATH  Google Scholar 

  57. Urbanik, K.: Analytical methods in probability theory. In: Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Vol. A, pp. 151–163. Reidel, Dordrecht (1988)

  58. van Dijk, G.: Introduction to Harmonic Analysis and Generalized Gelfand Pairs. Walter de Gruyter, Berlin (2009)

    MATH  Google Scholar 

  59. Volkovich, V.E.: Infinitely divisible distributions in algebras with stochastic convolution. J. Sov. Math. 40(4), 459–467 (1988)

    MathSciNet  Google Scholar 

  60. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  61. Zeuner, H.: Moment functions and laws of large numbers on hypergroups. Math. Z. 211, 369–407 (1992)

    MathSciNet  MATH  Google Scholar 

  62. Zeuner, H.: Domains of attraction with inner norming on Sturm–Liouville hypergroups. J. Appl. Anal. 1(2), 213–221 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Rúben Sousa and Semyon Yakubovich were partially supported by CMUP, which is financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020. Rúben Sousa was also supported by the Grant PD/BD/135281/2017, under the FCT PhD Programme UC|UP MATH PhD Program. Manuel Guerra was partially supported by the project CEMAPRE/REM – UIDB/05069/2020 – financed by FCT through national funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Yakubovich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Generalized convolution structures for Sturm–Liouville operators

Appendix: Generalized convolution structures for Sturm–Liouville operators

One-dimensional convolutions associated with Sturm–Liouville operators have been extensively studied in recent work of the authors [51, 52]. For convenience, in this appendix we summarize some fundamental results on this topic.

Let

$$\begin{aligned} \ell (u)(x) := {1 \over r(x)} \Bigl ( -(pu')'(x) + q(x)u(x) \Bigr ), \qquad x \in (a,b) \subset {\mathbb {R}} \end{aligned}$$

be a Sturm–Liouville expression whose coefficients are such that \(p, r > 0\) on (ab), pr are locally absolutely continuous and q is locally integrable on (ab).

Consider the integrals

$$\begin{aligned}&I_a = \int _a^c \int _a^y {dx \over p(x)} \bigl (r(y) + q(y)\bigr ) dy, \quad J_a = \int _a^c \int _y^c {dx \over p(x)} \bigl (r(y) + q(y)\bigr ) dy, \\&I_b = \int _c^b \int _y^b {dx \over p(x)} \bigl (r(y) + q(y)\bigr ) dy, \quad J_b = \int _c^b \int _c^y {dx \over p(x)} \bigl (r(y) + q(y)\bigr ) dy. \end{aligned}$$

The Feller boundary classification for \(\ell \) is as follows: the endpoint \(e \in \{a,b\}\) is said to be:

$$\begin{aligned} \begin{array}{llll} \text {regular } &{} \text {if} &{} I_e< \infty , &{} \!\!\!J_e< \infty ; \\ \text {exit } &{} \text {if} &{} I_e< \infty , &{} \!\!\!J_e = \infty ; \end{array} \qquad \quad \begin{array}{llll} \text {entrance } &{} \text {if} &{} I_e = \infty , &{} \!\!\!J_e < \infty ; \\ \text {natural } &{} \text {if} &{} I_e = \infty , &{} \!\!\!J_e = \infty \end{array} \end{aligned}$$
(A.1)

(the classification is independent of the choice of c). Throughout the appendix we assume that the endpoint a is regular or entrance.

Lemma A.1

The boundary value problem

$$\begin{aligned} \ell (v) = \lambda v \quad (a< x < b, \; \lambda \in {\mathbb {C}}), \qquad \; v(a) = 1, \qquad \; (pv')(a) = 0 \end{aligned}$$

has a unique solution \(v_\lambda (\varvec{\cdot })\). Moreover, \(\lambda \mapsto v_\lambda (x)\) is, for fixed x, an entire function of exponential type.

Proof

See [52, Lemma 2.1]. (The result of [52] is stated for the case \(q \equiv 0\), but the general case can be proved in a similar way.) \(\square \)

Proposition A.2

The operator \({\mathcal {L}}:{\mathcal {D}}({\mathcal {L}}) \longrightarrow L^2(r) \equiv L^2\bigl ((a,b),r(z)dz\bigr )\), where

$$\begin{aligned} {\mathcal {D}}({\mathcal {L}})&= {\left\{ \begin{array}{ll} \bigl \{ u \in L^2(r) \bigm | u, u' \!\in \mathrm {AC}_{\mathrm {loc}}(a,b), \; \ell (u) \in L^2(r), \; (pu')(a) = 0 \bigr \} &{} \text { if } b \text { is exit or natural},\\ \bigl \{ u \in L^2(r) \bigm | u, u' \!\in \mathrm {AC}_{\mathrm {loc}}(a,b), \; \ell (u) \in L^2(r), \; (pu')(a) = (pu')(b) = 0 \bigr \} &{} \text { otherwise}\\ \end{array}\right. } \\ {\mathcal {L}} u&= \ell (u), \qquad u \in {\mathcal {D}}({\mathcal {L}}) \end{aligned}$$

is a positive self-adjoint operator. There exists a locally finite positive Borel measure \(\varvec{\rho }_\ell \) on \({\mathbb {R}}_0^+\) such that the integral operator \({\mathcal {F}}_\ell : L^2(r) \longrightarrow L^2({\mathbb {R}}_0^+, \varvec{\rho }_\ell )\) defined by

$$\begin{aligned} ({\mathcal {F}}_{\ell \,} f)(\lambda ) := \int _a^b f(x) \, v_\lambda (x) \, r(x) dz \end{aligned}$$
(A.2)

is an isometric isomorphism whose inverse is given by

$$\begin{aligned} ({\mathcal {F}}_\ell ^{-1} \varphi )(x) = \int _{{\mathbb {R}}_0^+} \varphi (\lambda ) \, v_\lambda (x) \, \varvec{\rho }_\ell (d\lambda ). \end{aligned}$$
(A.3)

(The convergence of the integrals above is understood with respect to the norm of \(L^2({\mathbb {R}}_0^+, \varvec{\rho }_\ell )\) and \(L^2(r)\) respectively.) The operator \({\mathcal {F}}_\ell \) is a spectral representation of \({\mathcal {L}}\), i.e. we have

$$\begin{aligned} {\mathcal {D}}({\mathcal {L}})&= \biggl \{f \in L^2(r) \biggm | \int _{{\mathbb {R}}_0^+} \lambda ^2 \bigl |({\mathcal {F}}_\ell f)(\lambda )\bigr |^2 \varvec{\rho }_\ell (d\lambda ) < \infty \biggr \},\\&\quad \bigl ({\mathcal {F}}_\ell ({\mathcal {L}} f)\bigr ) (\lambda ) = \lambda \,\cdot \,({\mathcal {F}}_\ell f)(\lambda ), \qquad \quad f \in {\mathcal {D}}({\mathcal {L}}). \end{aligned}$$

Moreover, if \(f \in {\mathcal {D}}({\mathcal {L}})\) then \(f(x) = \int _{{\mathbb {R}}_0^+} ({\mathcal {F}}_{\ell \,}f)(\lambda ) \, v_\lambda (x) \, \varvec{\rho }_\ell (d\lambda )\) for all \(x \in (a,b)\), where the integral converges absolutely and locally uniformly.

If b is regular, entrance or exit, then \({\mathcal {L}}\) has purely discrete spectrum \(0 = \lambda _1 < \lambda _2 \le \ldots \rightarrow \infty \), and the isomorphism (A.2)–(A.3) reduces to

$$\begin{aligned}&{\mathcal {F}}_\ell : L^2(r) \longrightarrow \ell _2\bigl (\tfrac{1}{\Vert v_{\lambda _k} \Vert ^2}\bigr ), \qquad {\mathcal {F}}_{\ell \,} f \equiv \bigl ( ({\mathcal {F}}_{\ell \,} f)(\lambda _1), ({\mathcal {F}}_{\ell \,} f)(\lambda _2), \ldots \bigr ), \\&\qquad \qquad \qquad \qquad \qquad ({\mathcal {F}}_\ell ^{-1} \{c_k\})(x) = \sum _{k = 1}^\infty {c_k \, v_{\lambda _k}(x) \over \Vert v_{\lambda _k} \Vert ^2}, \end{aligned}$$

where \(\ell _2\bigl (\frac{1}{\Vert v_{\lambda _k} \Vert ^2}\bigr )\) denotes the weighted sequence space whose norm is \(\Vert \{c_k\}\Vert = \bigl (\sum _{k=1}^\infty {|c_k|^2 \over \Vert v_{\lambda _k} \Vert ^2}\bigr )^{1/2}\).

Proof

See [52, Proposition 2.5 and Lemma 2.6], [37, Section 5]. \(\square \)

Proposition A.3

The self-adjoint operator \(-{\mathcal {L}}\) is the generator of a Markovian semigroup \(\{e^{-t{\mathcal {L}}}\}_{t \ge 0}\) on \(L^2(r)\). For \(t>0\), the operators \(e^{-t{\mathcal {L}}}\) are given by

$$\begin{aligned} (e^{-t{\mathcal {L}}} h)(x) = \int _a^b h(y)\, p_\ell (t,x,\xi )\, r(\xi )d\xi \qquad \bigl (h \in L^2(r), \; x \in (a,b)\bigr ), \end{aligned}$$
(A.4)

where the kernel is defined by the integral

$$\begin{aligned} p_\ell (t,x_1,x_2) = \int _{{\mathbb {R}}_0^+} e^{-t\lambda } \, v_\lambda (x_1) \, v_\lambda (x_2)\, \varvec{\rho }_\ell (d\lambda ) \qquad \bigl (t > 0, \; x_1,x_2 \in (a,b)\bigr ).\qquad \end{aligned}$$
(A.5)

The right hand side of (A.5) is (for fixed \(t>0\)) absolutely and uniformly convergent on compact squares of \((a,b) \times (a,b)\).

Suppose also that a is regular and b is exit or natural. Then the integral in (A.5) converges absolutely and uniformly on compact squares of \([a,b) \times [a,b)\). Moreover, the restriction of \(e^{-t{\mathcal {L}}}\) to \(L^2(r) \cap \mathrm {C}_0[a,b)\) extends into a strongly continuous contraction semigroup on \(\mathrm {C}_0[a,b)\) which can be represented by the right hand side of (A.4), which is convergent for all \(h \in \mathrm {C}_0[a,b)\) and \(x \in [a,b)\).

Proof

See [52, Proposition 2.7], [23]. \(\square \)

Next we restrict our attention to the case \(q \equiv 0\) and state some further properties of the generalized eigenfunctions \(v_\lambda (x)\).

Lemma A.4

(a) If \(q \equiv 0\) and \(x \mapsto p(x) r(x)\) is an increasing function, then \(|v_\lambda (x)| \le 1\) for all \(a \le x < b\) and \(\lambda \ge 0\).

(b) Let \(S(\xi ) := \sqrt{p(\gamma ^{-1}(\xi )) \, r(\gamma ^{-1}(\xi ))}\), where \(\gamma (x) = \int _c^x\! {\sqrt{r(y) \over p(y)}} dy\) and \(\gamma ^{-1}\) is its inverse function. (Here \(c \in (a,b)\) is a fixed point; if \(\sqrt{r(y) \over p(y)}\) is integrable near a, then we may also take \(c=a\).) Assume that

$$\begin{aligned} \begin{array}{l} q \equiv 0,\\ \gamma (b) = \int _c^b\! {\sqrt{r(y) \over p(y)}} dy = \infty ,\,\\ \hbox { and there exists }\eta \in \mathrm {C}^1(\gamma (a),\infty )\hbox { such that }\eta \ge 0,\\ \hbox { the functions }\varvec{\phi }_\eta := {S' \over S} - \eta , \,\varvec{\psi }_\eta := {1 \over 2} \eta ' - {1 \over 4} \eta ^2 + {S' \over 2S} \,\cdot \,\eta \\ \hbox { are both decreasing on }(\gamma (a),\infty ) \hbox { and }\varvec{\phi }_\eta \hbox { satisfies }\lim _{\xi \rightarrow \infty } \varvec{\phi }_\eta (\xi ) = 0. \end{array} \end{aligned}$$
(A.6)

Then the following assertions are equivalent:

  • \(\lim _{x \uparrow b} p(x)r(x) = \infty \);

  • \(\lim _{x \uparrow b} v_\lambda (x) = 0\) for all \(\lambda > 0\).

Proof

See [52, Lemma 2.3 and Proposition 3.6]. \(\square \)

Theorem A.5

[Product formula for \(v_\lambda \)] Assume that (A.6) holds. Then there exists a family of measures \(\{\pi _{x_1,x_2}\}_{x_1,x_2 \in [a,b)} \subset {\mathcal {P}}[a,b)\) such that we have

$$\begin{aligned} v_\lambda (x_1) \, v_\lambda (x_2) = \int _{[a,b)} v_\lambda (x_3)\, \pi _{x_1,x_2}(dx_3) \qquad \text {for all }\, x_1, x_2 \in [a,b), \; \lambda \in {\mathbb {C}}. \end{aligned}$$

If \(p \equiv r\) and \(a = \gamma (a) = 0\), then \(\mathrm {supp}(\pi _{x_1,x_2}) \subset [|x_1-x_2|,x_1+x_2]\).

Proof

See [52, Section 4 and Subsection 5.3]. \(\square \)

Proposition A.6

Assume that (A.6) holds. Let \({\mathcal {F}}_\ell \) be the \(\ell \)-Fourier transform of measures defined by

$$\begin{aligned} ({\mathcal {F}}_{\ell \,} \mu )(\lambda ) := \int _{[a,b)} v_\lambda (x) \, \mu (dx) \qquad (\mu \in {\mathcal {P}}[a,b),\, \lambda \ge 0). \end{aligned}$$
(A.7)

Then:

(i):

\({\mathcal {F}}_{\ell \,} \mu \) is continuous on \({\mathbb {R}}_0^+\). Moreover, if the family \(\{\mu _j\} \subset {\mathcal {M}}_{\mathbb {C}}[a,b)\) is tight and uniformly bounded, then \(\{{\mathcal {F}}_{\ell \,} \mu _j\}\) is equicontinuous on \({\mathbb {R}}_0^+\).

(ii):

Let \(\mu _1, \mu _2 \in {\mathcal {M}}_{\mathbb {C}}[a,b)\). If \({\mathcal {F}}_{\ell \,} \mu _1 \equiv {\mathcal {F}}_{\ell \,} \mu _2\), then \(\mu _1 = \mu _2\).

(iii):

Let \(\{\mu _n\} \subset {\mathcal {M}}_+[a,b)\), \(\mu \in {\mathcal {M}}_+[a,b)\), and suppose that \(\mu _n \overset{w}{\longrightarrow }\mu \). Then

$$\begin{aligned} {\mathcal {F}}_{\ell \,} \mu _n \xrightarrow [\,n \rightarrow \infty \,]{} {\mathcal {F}}_{\ell \,} \mu \qquad \text {uniformly on compact sets.} \end{aligned}$$

Proof

See [52, Proposition 5.2]. \(\square \)

The \(\ell \)-convolution and the \(\ell \)-translation operator are respectively defined by

$$\begin{aligned} (\mu {\mathop {\diamond }\limits _{\ell }} \nu )(d\xi )&:= \int _{[a,b)} \int _{[a,b)} \pi _{x,y}(d\xi ) \, \mu (dx) \, \nu (dy), \quad \mu , \nu \in {\mathcal {M}}_{\mathbb {C}}[a,b), \\ ({\mathcal {T}}_\ell ^\mu f)(x)&:= \int _{[a,b)} f \, d(\delta _x {\mathop {\diamond }\limits _{\ell }} \mu ), \quad \mu \in {\mathcal {M}}_{\mathbb {C}}[a,b), \; x \in [a,b), \; f \in L^p(r), \end{aligned}$$

where \(L^p(r) \equiv L^p\bigl ((a,b),r(z)dz\bigr )\)  (\(1 \le p \le \infty \)).

Proposition A.7

Assume that (A.6) holds.

(a):

\(\mu = \mu _1 {\mathop {\diamond }\limits _{\ell }} \mu _2\) if and only if \(({\mathcal {F}}_{\ell \,}\mu )(\lambda ) = ({\mathcal {F}}_{\ell \,}\mu _1)(\lambda ) \,\cdot \,({\mathcal {F}}_{\ell \,}\mu _2)(\lambda )\) for all \(\lambda \ge 0\)    \((\mu , \mu _1, \mu _2 \in {\mathcal {M}}_{\mathbb {C}}[a,b))\).

(b):

The \({\mathop {\diamond }\limits _{\ell }}\) convolution is weakly continuous: if \(\mu _n \overset{w}{\longrightarrow }\mu \) and \(\nu _n \overset{w}{\longrightarrow }\nu \), then \(\mu _n {\mathop {\diamond }\limits _{\ell }} \nu _n \overset{w}{\longrightarrow }\mu {\mathop {\diamond }\limits _{\ell }} \nu \).

(c):

If \(f \in \mathrm {C}_\mathrm {c}^2[a,b)\) with \(f' \in \mathrm {C}_\mathrm {c}(a,b)\), then

$$\begin{aligned}&\int _{[a,b)} f \, d(\delta _x {\mathop {\diamond }\limits _{\ell }} \mu ) \\&\quad = \int _{{\mathbb {R}}_0^+} ({\mathcal {F}}_{\ell \,} f)(\lambda ) \, ({\mathcal {F}}_{\ell \,} \mu )(\lambda ) \, v_\lambda (x) \, \varvec{\rho }_\ell (d\lambda ) \qquad \text {for all } \mu {\in } {\mathcal {M}}_{\mathbb {C}}[a,b),\, x {\in } (a,b). \end{aligned}$$
(d):

Suppose that \(\lim _{x \uparrow b} p(x) r(x) = \infty \), and let \(\mu \in {\mathcal {M}}_{\mathbb {C}}[a,b)\). Then \(\delta _x {\mathop {\diamond }\limits _{\ell }} \mu \overset{v}{\longrightarrow }\varvec{0}\) as \(x \uparrow b\), where \(\varvec{0}\) is the zero measure.

(e):

Let \(1 \le p \le \infty \) and \(\mu \in {\mathcal {M}}_+[a,b)\). The \(\ell \)-translation \({\mathcal {T}}_\ell ^{\,\,\mu }\) is a bounded operator on \(L^p(r)\) such that

$$\begin{aligned} \Vert {\mathcal {T}}_\ell ^{\,\,\mu } f\Vert _{L^p(r)} \le \Vert \mu \Vert \,\cdot \,\Vert f\Vert _{L^p(r)} \qquad \text {for all } f \in L^p(r). \end{aligned}$$
(f):

Let \(1 \le p_1, p_2 \le \infty \) with \({1 \over p_1} + {1 \over p_2} \ge 1\), and let \(f \in L^{p_1\!}(r)\), \(g \in L^{p_2\!}(r)\). Then the \(\ell \)-convolution

$$\begin{aligned} (f {\mathop {\diamond }\limits _{\ell }} g)(x) := \int _a^b ({\mathcal {T}}_\ell ^{\,\,y} f)(x)\, g(y)\, r(y) dy \end{aligned}$$

(where \({\mathcal {T}}_\ell ^{\,\,y} \equiv {\mathcal {T}}_\ell ^{\,\,\delta _y}\)) is well-defined and satisfies

$$\begin{aligned} \Vert f {\mathop {\diamond }\limits _{\ell }} g \Vert _{L^s(r)} \le \Vert f \Vert _{L^{p_1\!}(r)} \Vert g \Vert _{L^{p_2\!}(r)}, \qquad \text {where }\, s = {1 \over 1/p_1 + 1/p_2 - 1}. \end{aligned}$$

Proof

See [51, Corollary 6.3 and Proposition 6.9], [52, Proposition 5.4 and Lemma 5.5]. \(\square \)

Proposition A.8

If (A.6) holds with \(p \equiv r\) and \(a = \gamma (a) = 0\), then \(\bigl ({\mathbb {R}}_0^+,{\mathop {\diamond }\limits _{\ell }}\bigr )\) is a commutative hypergroup (in the sense of [6, 31]) with identity element \(\delta _0\) and trivial involution, i.e. the following axioms hold:

  • \(\bigl ({\mathbb {R}}_0^+,{\mathop {\diamond }\limits _{\ell }}\bigr )\), equipped with the total variation norm, is a commutative Banach algebra over \({\mathbb {C}}\) whose identity element is the measure \(\delta _0\);

  • If \(\mu , \nu \in {\mathcal {P}}({\mathbb {R}}_0^+)\), then \(\mu {\mathop {\diamond }\limits _{\ell }} \nu \in {\mathcal {P}}({\mathbb {R}}_0^+)\);

  • \((\mu ,\nu ) \mapsto \mu {\mathop {\diamond }\limits _{\ell }} \nu \) is continuous in the weak topology of measures;

  • \((x_1,x_2) \mapsto \mathrm {supp}(\delta _{x_1} {\mathop {\diamond }\limits _{\ell }} \delta _{x_2})\) is continuous from \({\mathbb {R}}_0^+ \times {\mathbb {R}}_0^+\) into the space of compact subsets of \({\mathbb {R}}_0^+\), and we have \(0 \in \mathrm {supp}(\delta _{x_1} {\mathop {\diamond }\limits _{\ell }} \delta _{x_2})\) if and only if \(x_1 = x_2\).

Proof

See [52, Subsection 5.3]. \(\square \)

The measures \(\{\mu _t\}_{t \ge 0} \subset {\mathcal {P}}[a,b)\) are said to be an \(\ell \)-convolution semigroup if

$$\begin{aligned} \mu _s {\mathop {\diamond }\limits _{\ell }} \mu _t = \mu _{s+t} \text { for all } s, t \ge 0, \qquad \mu _0 = \delta _a \qquad \text { and } \;\; \mu _t \overset{w}{\longrightarrow }\delta _a \text { as } t \downarrow 0. \end{aligned}$$

Proposition A.9

Let \(\ell \) be a Sturm–Liouville expression with \(p \equiv r\), \(q \equiv 0\) and \(a = \gamma (a) = 0\). Suppose that (A.6) holds and that \(\lim _{x \uparrow b} p(x) = \infty \).

(a):

For \(t > 0\), let \(\alpha _t^\ell \) be the measure defined by \(\alpha _t^\ell (dx) := p_\ell (t,0,x) r(x) dx\), where \(p_\ell (t,x_1,x_2)\) is the kernel (A.5). Set \(\alpha _0^\ell = \delta _0\). Then \(\{\alpha _t^\ell \}_{t \ge 0}\) is an \(\ell \)-convolution semigroup such that

$$\begin{aligned} \lim _{t \downarrow 0} {1 \over t} \alpha _t^\ell [\varepsilon , \infty ) = 0 \qquad \text {for every }\, \varepsilon > 0. \end{aligned}$$
(b):

Let \(\psi (\lambda )\) be a function which can be written as

$$\begin{aligned} \psi (\lambda ) = c\lambda + \int _{{\mathbb {R}}^+} (1-v_\lambda (x)) \, \tau (dx) \qquad (\lambda \ge 0) \end{aligned}$$

for some \(c \ge 0\) and some positive measure \(\tau \) on \({\mathbb {R}}^+\) such that \(\tau \) is finite on the complement of any neighbourhood of 0 and satisfies \(\int _{{\mathbb {R}}^+} (1-v_\lambda (x)) \, \tau (dx) < \infty \) for \(\lambda \ge 0\). Then there exists an \(\ell \)-convolution semigroup \(\{\mu _t\}_{t \ge 0}\) such that \(({\mathcal {F}}_{\ell \,} \mu _t)(\lambda ) = e^{-t\psi (\lambda )}\). Moreover, there exists a constant \(C > 0\) independent of \(\lambda \) such that

$$\begin{aligned} \psi (\lambda ) \le C(1+\lambda ) \qquad \text {for all } \lambda \ge 0. \end{aligned}$$
(A.8)

Proof

Part (a) and the first statement in part (b) follow from [51, Theorem 6.5 and Propositions 6.13–6.14].

To prove the estimate (A.8), start by picking \(\lambda _1 > 0\). We know that \(\lim _{x \uparrow b} v_{\lambda _1}(x) = 0\) (Lemma A.4(b)), hence there exists \(\beta \in (a,b)\) such that \(|v_{\lambda _1}(x)| \le {1 \over 2}\) for all \(\beta \le x < b\). Combining this with Lemma A.4(a), we deduce that for all \(\lambda \ge 0\) we have

$$\begin{aligned} \begin{aligned} n \int _{[\beta ,b)\!} \bigl (1-v_\lambda (x)\bigr ) \mu _{1/n}(dx)&\le 2n \int _{[\beta ,b)\!} \mu _{1/n}(dx) \\&\le 4n \int _{[\beta ,b)\!}\bigl ( 1-v_{\lambda _1}(x) \bigr ) \mu _{1/n}(dx) \\&\le 4n \bigl (1-({\mathcal {F}}_\ell \mu _{1/n})(\lambda _1)\bigr ) \le 4\psi (\lambda _1). \end{aligned} \end{aligned}$$
(A.9)

Next, choose \(\lambda _2 > 0\) such that \(1 - v_\lambda (x) < {1 \over 2}\) for all \(0 \le \lambda \le \lambda _2\) and all \(a < x \le \beta \). (This is possible because of the boundedness of the family of derivatives \(\{\partial _\lambda v_{(\cdot )}(x)\}_{x \in (a, \beta ]}\), cf. [52, pp. 5–6].) Defining \(\eta _1(x) := \int _a^x {1 \over p(y)} \int _a^y r(\xi ) d\xi \, dy\), we obtain

$$\begin{aligned} 1 - v_{\lambda _2}(x) = \lambda _2 \int _a^x {1 \over p(y)} \int _a^y v_{\lambda _2}(\xi ) r(\xi ) d\xi \, dy \ge {\lambda _2 \over 2} \eta _1(x) \qquad \text {for all } a \le x \le \beta . \end{aligned}$$

On the other hand, by Lemma A.4(a) we have \(1 - v_\lambda (x) \le \lambda \int _a^x {1 \over p(y)} \int _a^y |v_\lambda (\xi )| r(\xi ) d\xi \, dy \le \lambda \eta _1(x)\) for all \(x \in [a,b)\) and \(\lambda \ge 0\). Consequently,

$$\begin{aligned} \begin{aligned} n \int _{[a,\beta )\!} \bigl (1-v_\lambda (x)\bigr ) \mu _{1/n}(dx)&\le \lambda n \int _{[a,\beta )\!} \eta _1(x)\, \mu _{1/n}(dx) \\&\le {2\lambda n \over \lambda _2} \int _{[a,\beta )\!} \bigl (1 - v_{\lambda _2}(x)\bigr ) \mu _{1/n}(dx) \\&\le {2\lambda n \over \lambda _2} \bigl (1-({\mathcal {F}}_\ell \mu _{1/n})(\lambda _2)\bigr ) \le {2\lambda \over \lambda _2} \psi (\lambda _2). \end{aligned} \end{aligned}$$
(A.10)

Combining (A.9) and (A.10) one sees that for all \(n \in {\mathbb {N}}\) and \(\lambda \ge 0\) we have \(n(1-e^{-\psi (\lambda )/n}) \le C (1+\lambda )\), where \(C = \max \bigl \{4\psi _\mu (\lambda _1), {2 \over \lambda _2} \psi _\mu (\lambda _2)\bigr \}\). The conclusion follows by taking the limit as \(n \rightarrow \infty \). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, R., Guerra, M. & Yakubovich, S. Product formulas and convolutions for Laplace–Beltrami operators on product spaces: beyond the trivial case. Math. Ann. 387, 879–926 (2023). https://doi.org/10.1007/s00208-022-02424-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02424-6

Navigation