Skip to main content
Log in

The Neumann problem in graph Lipschitz domains in the plane

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study new aspects of the solvability of the classical Neumann boundary value problem in a graph Lipschitz domain in the plane. When the domain is the upper half-plane, the boundary data is assumed to belong to weighted Lebesgue or weighted Lorentz spaces; we show that the solvability of the Neumann problem in these settings may be characterized in terms of Muckenhoupt weights and related weights, respectively. For a general graph Lipschitz domain \(\Omega \), as proved in an unpublished work by E. Fabes and C. Kenig, there exists \(\varepsilon _\Omega >0\) such that the Neumann problem is solvable with data in \(L^p(\partial \Omega )\) for \(1<p<2+\varepsilon _\Omega ;\) we review the proof of this result and show that the Neumann problem is solvable at the endpoint \(2+\varepsilon _\Omega \) with data in the Lorentz space \(L^{2+\varepsilon _\Omega ,1}(\partial \Omega ).\) We present examples of our results in Schwarz–Christoffel Lipschitz domains and related domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agora, E., Carro, M.J., Soria, J.: Characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz spaces. J. Fourier Anal. Appl. 19(4), 712–730 (2013)

    Article  MATH  Google Scholar 

  2. Armitage, D.: The Neumann problem for a function harmonic in \({ R}^{n}\times (0,\infty )\). Arch. Rational Mech. Anal. 63(1), 89–105 (1976)

    Article  Google Scholar 

  3. Carro, M.J., Ortiz-Caraballo, C.: On the Dirichlet problem on Lorentz and Orlicz spaces with applications to Schwarz-Christoffel domains. J. Differ. Equ. 265(5), 2013–2033 (2018)

    Article  MATH  Google Scholar 

  4. Chung, H., Hunt, R., Kurtz, D.: The Hardy–Littlewood maximal function on \(L(p,\, q)\) spaces with weights. Indiana Univ. Math. J. 31(1), 109–120 (1982)

    Article  MATH  Google Scholar 

  5. Dahlberg, B., Kenig, C.: Hardy spaces and the Neumann problem in \(L^p\) for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465 (1987)

    Article  MATH  Google Scholar 

  6. de Guzmán, M.: Real Variable Methods in Fourier Analysis. Notas de Matemática [Mathematical Notes], vol. 75. North-Holland Publishing Co., Amsterdam (1981)

    Google Scholar 

  7. Driscoll, T., Trefethen, L.: Schwarz–Christoffel Mapping. Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  8. Fabes, E.B., Jodeit, M., Jr., Rivière, N.M.: Potential techniques for boundary value problems on \(C^{1}\)-domains. Acta Math. 141(3–4), 165–186 (1978)

    Article  MATH  Google Scholar 

  9. Fefferman, C., Stein, E.: \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MATH  Google Scholar 

  10. García-Cuerva, J.: Weighted \(H^{p}\) spaces. Dissertationes Math. (Rozprawy Mat.) 162, 63 (1979)

    MATH  Google Scholar 

  11. Garnett, J.: Bounded Analytic Functions, Volume 236 of Graduate Texts in Mathematics, 1st edn. Springer, New York (2007)

    Google Scholar 

  12. Grafakos, L.: Classical Fourier Analysis, Volume 249 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)

    Book  Google Scholar 

  13. Hunt, R., Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    Article  MATH  Google Scholar 

  14. Jerison, D., Kenig, C.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4(2), 203–207 (1981)

    Article  MATH  Google Scholar 

  15. Kenig, C.: Weighted Hardy spaces on Lipschitz domains. In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, pages 263–274. American Mathematical Society, Providence (1979)

  16. Kenig, C.: Weighted \(H^{p}\) spaces on Lipschitz domains. Am. J. Math. 102(1), 129–163 (1980)

    Article  MATH  Google Scholar 

  17. Kenig, C.: Elliptic boundary value problems on Lipschitz domains. In: Beijing Lectures in Harmonic Analysis, pp. 131–183. Princeton University Press, Princeton (1986)

    Google Scholar 

  18. Kerman, R., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function. Stud. Math. 71(3), 277–284 (1981/82)

  19. Kolesnikov, I., Kopaneva, L.: Conformal mapping onto a numerable polygon with double symmetry. Izv. Vyssh. Uchebn. Zaved. Mat. 12, 37–47 (2014)

    MATH  Google Scholar 

  20. Lerner, A.: On pointwise estimates involving sparse operators. N. Y. J. Math. 22, 341–349 (2016)

    MATH  Google Scholar 

  21. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MATH  Google Scholar 

  22. Riera, G., Carrasco, H., Preiss, R.: The Schwarz–Christoffel conformal mapping for “polygons’’ with infinitely many sides. Int. J. Math. Math. Sci. 350326, 20 (2008)

    MATH  Google Scholar 

  23. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Naibo.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

María Jesús Carro and Carmen Ortiz-Caraballo were partially supported by MTM2016-75196-P (MINECO/FEDER, UE) and Grant PID2020-113048GB-I00 funded by MCIN/AEI/10.13039/501100011033. Virginia Naibo was partially supported by the National Science Foundation under Grant DMS 1500381 and the Simons Foundation under Grant 705953. Carmen Ortiz-Caraballo was partially supported by Project GR18108 (Junta de Extremadura-Spain and the European Union-European Regional Development Funds)

Appendix A

Appendix A

In this appendix, we state a number of known results used in the proofs of Theorems 1.4 and 1.5.

For the following statements, \(\Omega ,\) \(\Lambda \), \(\Phi \) and L are as defined in Sect. 1 (see (1.2)).

Lemma A.1

(Lemma 1.13 in Kenig [16]) There exist \(0<\alpha <\arctan (1/L)\) and \(0<\beta <\pi /2,\) which depend only on L,  such that for almost every \(\xi \in \Lambda \) with respect to ds, \(\Phi ^{-1}(\Gamma _\alpha (\xi ))\subset \Gamma _\beta (\Phi ^{-1}(\xi )).\) If \(L<1,\) there exist \(0<\alpha <\pi /2\) and \(0<\beta <\arctan (1/L)\) such that for almost every \(x\in {\mathbb {R}}\) with respect to Lebesgue measure, \(\Phi (\Gamma _\alpha (x))\subset \Gamma _\beta (\Phi (x))\subset \Omega .\)

Definition A.2

(Definition 1.14 in Kenig [16]) Given \(0\le \lambda \le 1,\) define \(\Phi _\lambda \) such that \(\Phi _\lambda '(z)=(\Phi '(z))^{\lambda }.\) Note that \(\Phi '_\lambda \) is never zero and \(|\arg (\Phi _\lambda '(z))|\le \lambda \arctan (L)<\pi /2;\) then \(\Phi _\lambda \) is one-to-one. We define \(\Omega _\lambda =\Phi _\lambda ({\mathbb {R}}^2_+)\) and note that \(\Omega _\lambda \) is a Lipschitz domain of the same type as \(\Omega \) and \(\Phi _\lambda \) is a conformal mapping from \({\mathbb {R}}^2_+\) onto \(\Omega _\lambda \) that satisfies the same properties as \(\Phi .\) Set \(\Lambda _\lambda =\partial \Omega _\lambda \) and denote its arc length measure by \(ds_\lambda .\) Also observe that \(\Lambda _\lambda \) can be parametrized by \(\xi _\lambda (x)=x+i\gamma _\lambda (x)\) with \(\Vert \gamma _\lambda '\Vert _{L^\infty }\le \tan (\lambda \arctan (L)).\)

Lemma A.3

(Lemma 1.15 in Kenig [16]) For \(0\le \lambda _1\le 1\) and \(0\le \lambda _2\le 1\) and using the notation introduced in Definition A.2, consider \(\sigma _{\lambda _1,\lambda _2}:\Omega _{\lambda _2}\rightarrow \Omega _{\lambda _1}\) given by \(\sigma _{\lambda _1,\lambda _2}=\Phi _{\lambda _1}\circ (\Phi _{\lambda _2})^{-1}.\) There exist \(\varepsilon >0,\) \(0<\alpha <\arctan (1/L)\) and \(0<\beta <\arctan (1/L),\) depending only on L,  such that if \(\lambda _2<\lambda _1\) and \(\lambda _1-\lambda _2<\varepsilon \) then for almost every \(z \in \Lambda _{\lambda _2}\) with respect to \(ds_{\lambda _2},\) it holds that

$$\begin{aligned} \sigma _{\lambda _1,\lambda _2}(\Gamma _\alpha (z))\subset \Gamma _\beta (\sigma _{\lambda _1,\lambda _2}(z))\subset \Omega _{\lambda _1}. \end{aligned}$$

Lemma A.4

(Lemma 2.3 in Kenig [16]) If \(0<\alpha <\arctan (1/L),\) \(0<\beta <\arctan (1/L)\) and \(\nu \in A_\infty (\Lambda )\) then

$$\begin{aligned} \nu (\{\xi \in \Lambda : {\mathcal {M}}_\alpha h (\xi )>\lambda \})\sim \nu (\{\xi \in \Lambda : {\mathcal {M}}_\beta h (\xi )>\lambda \}),\quad \forall \lambda >0, \end{aligned}$$

where the implicit constant depends only on \(\nu ,\) L\(\alpha \) and \(\beta .\)

Theorem A.5

(Theorem 2.8 in Kenig [16]) Let \(0<p<\infty \) and \(\nu \in A_\infty (\Lambda ).\) Then \(h\in H^p(\Omega , \nu )\) if and only if \(h\circ \Phi \in H^p({\mathbb {R}}^2_+,\Phi (\nu )),\) with equivalence of norms.

Definition A.6

(Definition 2.10 in Kenig [16]) Let \(\nu \in A_\infty (\Lambda ).\) The space \(AE(\nu )\) is the class of functions h that are analytic and different from 0 on \(\Omega ,\) have a non-tangential limit almost everywhere in \(\Lambda \) with respect to ds that satisfies \(|h(\xi )|=\nu (\xi )\) for almost every \(\xi \in \Lambda ,\) and there exists \(m\ge 0\) such that \((h\circ \Phi )(z) \Phi '(z)/(i+z)^m\in H^1({\mathbb {R}}^2_+,dx).\)

Theorem A.7

(Theorem 2.13 in Kenig [16]) Let \(0<p<\infty \) and \(\nu \in A_\infty (\Lambda ).\) If h is analytic in \(\Omega ,\) the following conditions are equivalent:

  1. (a)

    \(h\in H^p(\Omega ,\nu ),\)

  2. (b)

    \(\sup _{t>0}(\int _\Lambda |h(\xi +it)|^p d\nu (\xi ))^{1/p}<\infty ,\)

  3. (c)

    for any \(k\in AE(\nu ),\) \(h \,k^{1/p}\in H^p(\Omega ,ds).\)

Moreover, the corresponding norms are equivalent.

For the next two results, consider curves \(\Lambda _1\) and \(\Lambda _2\) in the complex plane, given parametrically by \(\xi _1(x)=x+i \gamma _1(x)\) and \(\xi _2(x)=x+i \gamma _2(x)\) for \(x\in {\mathbb {R}},\) respectively, where \(\gamma _1\) and \(\gamma _2\) are Lipchitz functions. Denote \(\Omega _j=\{z\in \mathbb {C}: z=x+iy \text { and } y>\gamma _j(x)\}\) for \(j=1,2.\) Consider a conformal mapping \(\sigma _{1,2}:\Omega _2\rightarrow \Omega _1\) such that \(\sigma _{1,2}(\infty )=\infty \) (then \(\sigma _{1,2}\) extends as a homeomorphism from \(\overline{\Omega _2}\) onto \(\overline{\Omega _1}\)). If \(\nu \) is a measure on \(\Lambda _1,\) then \(\sigma _{1,2}(\nu )\) denotes the measure on \(\Lambda _2\) defined by \(\sigma _{1,2}(\nu )(U)=\nu (\sigma _{1,2}(U))\) for any measurable set \(U\subset \Lambda _2.\)

Lemma A.8

(Lemma 1.16 in Kenig [16]) If \(\nu \in A_{\infty }(\Lambda _1),\) then \(\sigma _{1,2}(\nu )\in A_\infty (\Lambda _2).\)

Definition A.9

(Definition 2.11 in Kenig [16]) Consider the corresponding conformal mappings \(\Phi _1:{\mathbb {R}}^2_+\rightarrow \Omega _1\) and \(\Phi _2:{\mathbb {R}}^2_+\rightarrow \Omega _2,\) and let \(\nu \in A_\infty (\Lambda _1)\) and \(\mu \in A_\infty (\Lambda _2).\) The space \(AE(\nu ,\mu )\) is the class of functions h that are analytic and different from 0 on \(\Omega _2,\) have a non-tangential limit almost everywhere in \(\Lambda _2\) with respect to arc length measure \(ds_2\) that satisfies \(|h(\xi )|= (d\sigma _{1,2}(\nu )/d\mu )(\xi )\) for almost every \(\xi \in \Lambda _2,\) and there exists \(m\ge 0\) and \(k\in AE(\mu )\) such that \((h(\Phi _2(z))k(\Phi _2(z)) \Phi _2'(z))/(i+z)^m\in H^1({\mathbb {R}}^2_+,dx).\)

Theorem A.10

(Corollary 2.18 in Kenig [16]) Let \(0<p<\infty ,\) \(\nu \in A_\infty (\Lambda _1),\) \(\mu \in A_\infty (\Lambda _2)\) and \(k\in AE(\nu ,\mu ).\) Then \(h\in H^p(\Omega _1,\nu )\) if and only if \((h\circ \sigma _{1,2})\,k^{1/p}\in H^p(\Omega _2,\mu ),\) with equivalent norms.

We end this appendix by stating two lemmas in the setting of \({\mathbb {R}}^2_+.\)

Lemma A.11

(Corollary 4.3 in Garnett [11]) Let \(0<p,r<\infty \) and \(h\in H^p({\mathbb {R}}^2_+,dx).\) If the non-tangential limit of h belongs to \(L^r({\mathbb {R}}),\) then \(h\in H^r({\mathbb {R}}^2_+,dx).\)

Lemma A.12

(Lemma I.10 in García–Cuerva [10]) Let \(1<q<\infty ,\) \(w\in A_q({\mathbb {R}})\) and s(xt) be a non-negative subharmonic function on \({\mathbb {R}}^2_+\) which is in \(L^q({\mathbb {R}}, w)\) uniformly in \(t>0.\) Then s has a least harmonic majorant which is the Poison integral of some function \(s_0\in L^q({\mathbb {R}},w).\) Moreover, \(s_0\) is the pointwise limite of \(s(\cdot ,t)\) as \(t\rightarrow 0\) if such limit exits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carro, M.J., Naibo, V. & Ortiz-Caraballo, C. The Neumann problem in graph Lipschitz domains in the plane. Math. Ann. 385, 17–57 (2023). https://doi.org/10.1007/s00208-021-02347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02347-8

Mathematics Subject Classification

Navigation