Skip to main content
Log in

Schottky presentations of positive representations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that total positivity gives rise to a partial cyclic order on the set of oriented flags in \({\mathbb {R}}^n\). Using the notion of interval given by this partial cyclic order, we construct Schottky groups in \({{\,\mathrm{PSL}\,}}(n,{\mathbb {R}})\) and show that they correspond to images of positive representations in the sense of Fock and Goncharov. We construct polyhedral fundamental domains for the cocompact domain of discontinuity that these groups admit in the projective space or the sphere, depending on the dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Birkhoff, G.: Extensions of Jentzsch’s theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Burger, M., Iozzi, A., Wienhard, A.: Surface group representations with maximal Toledo invariant. Ann. Math. (2) 172(1), 517–566 (2010)

    Article  MathSciNet  Google Scholar 

  3. Burger, M., Iozzi, A., Wienhard, A.: Higher Teichmüller spaces: from \({\rm SL}(2,{\mathbb{R}})\) to other Lie groups. In: Handbook of Teichmüller Theory. Vol. IV, volume 19 of IRMA Lect. Math. Theor. Phys., pp. 539–618. Eur. Math. Soc., Zürich (2014)

  4. Burelle, J.-P., Treib, N.: Schottky groups and maximal representations. Geom. Dedic. 195, 215–239 (2018)

    Article  MathSciNet  Google Scholar 

  5. Choi, S., Goldman, W.: Topological tameness of Margulis spacetimes. Am. J. Math. 139(2), 297–345 (2017)

    Article  MathSciNet  Google Scholar 

  6. Drumm, T.A., Goldman, W.M.: Complete flat Lorentz \(3\)-manifolds with free fundamental group. Int. J. Math. 1(2), 149–161 (1990)

    Article  MathSciNet  Google Scholar 

  7. Danciger, J., Guéritaud, F., Kassel, F.: Fundamental domains for free groups acting on anti-de Sitter 3-space. Math. Res. Lett. 23(3), 735–770 (2016)

    Article  MathSciNet  Google Scholar 

  8. Danciger, J., Guéritaud, F., Kassel, F.: Margulis spacetimes via the arc complex. Invent. Math. 204(1), 133–193 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006)

    Article  Google Scholar 

  10. Frances, C.: The conformal boundary of Margulis space-times. C. R. Math. Acad. Sci. Paris 336(9), 751–756 (2003)

    Article  MathSciNet  Google Scholar 

  11. Goldman, W.M.: Crooked surfaces and anti-de Sitter geometry. Geom. Dedic. 175, 159–187 (2015)

    Article  MathSciNet  Google Scholar 

  12. Guichard, O.: Une dualité pour les courbes hyperconvexes. Geom. Dedic. 112, 141–164 (2005)

    Article  MathSciNet  Google Scholar 

  13. Guichard, O.: Composantes de Hitchin et représentations hyperconvexes de groupes de surface. J. Differ. Geom. 80(3), 391–431 (2008)

    Article  Google Scholar 

  14. Guichard, O., Wienhard, A.: Anosov representations: domains of discontinuity and applications. Invent. Math. 190(2), 357–438 (2012)

    Article  MathSciNet  Google Scholar 

  15. Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31(3), 449–473 (1992)

    Article  MathSciNet  Google Scholar 

  16. Kapovich, M., Leeb, B., Porti, J.: Morse actions of discrete groups on symmetric space. ArXiv preprint arXiv:1403.7671 (2014)

  17. Kapovich, M., Leeb, B., Porti, J.: Anosov subgroups: dynamical and geometric characterizations. Eur. Math. J. 3, 808–898 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kapovich, M., Leeb, B., Porti, J.: Dynamics on flag manifolds: domains of proper discontinuity and cocompactness. Geom. Topol. 22, 157–234 (2017)

    Article  MathSciNet  Google Scholar 

  19. Labourie, F.: Anosov flows, surface groups and curves in projective space. Invent. Math. 165(1), 51–114 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lusztig, G.: Total positivity in reductive groups. Lie Theory and Geometry: In Honor of Bertram Kostant, pp. 531–568 (1994)

  21. Lusztig, G.: A survey of total positivity. Milan J. Math. 76, 125–134 (2008)

    Article  MathSciNet  Google Scholar 

  22. Pinkus, A.: Totally Positive Matrices. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  23. Schoenberg, I.: Über variationsvermindernde lineare transformationen. Math. Z. 32(1), 321–328 (1930)

    Article  MathSciNet  Google Scholar 

  24. Stecker, F., Treib, N.: Domains of discontinuity in oriented flag manifolds. ArXiv e-prints, June (2018)

  25. Stecker, F.: Balanced ideals and domains of discontinuity of Anosov representations. arXiv e-prints, (2018)

  26. Tao, T.: Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

  27. Whitney, A.M.: A reduction theorem for totally positive matrices. J. Anal. Math. 2, 88–92 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Burelle.

Additional information

Communicated by Thomas Schick.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.-P. Burelle: Burelle gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number RGPIN-2020-05557] and U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 "RNMS: Geometric Structures and Representation Varieties" (the GEAR Network). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC starting grant DiGGeS, Grant agreement no 715982). N. Treib: Treib gratefully acknowledges support from the Klaus Tschira Foundation, the European Research Council under ERC-Consolidator Grant 614733 and ERC starting grant DiGGeS, Grant agreement no 715982, the RTG 2229 grant of the German Research Foundation, and the GEAR Network.

Anti-de Sitter crooked planes

Anti-de Sitter crooked planes

In this appendix we will show that our notion of halfspace in \({{\mathbb {R}}}{{\mathbb {P}}}^{3}\) coincides with that of anti-de Sitter crooked halfspace introduced in [8] and studied in [7, 11]. More precisely, an \(\mathsf {AdS}^3\) crooked halfspace is the restriction to the projective model of \(\mathsf {AdS}^3\) of an \({{\mathbb {R}}}{{\mathbb {P}}}^{3}\) halfspace as defined in Sect. 5.

Definition A.1

The 3-dimensional anti-de Sitter space \(\mathsf {AdS}^3\) is the group \({{\,\mathrm{PSL}\,}}(2,{\mathbb {R}})\) endowed with the Lorentzian metric given by its Killing form.

The neutral component of the isometry group of \(\mathsf {AdS}^3\) is \({{\,\mathrm{PSL}\,}}(2,{\mathbb {R}})\times {{\,\mathrm{PSL}\,}}(2,{\mathbb {R}})\) acting by left and right multiplication.

Definition A.2

Given a geodesic \(\ell \subset {\mathbb {H}}^2\) in the hyperbolic plane, the associated \(\mathsf {AdS}^3\) right crooked plane \(C(\ell )\) is the set of isometries \(g\in {{\,\mathrm{PSL}\,}}(2,{\mathbb {R}})\) which have a nonattracting fixed point on \({\overline{\ell }}\subset \overline{{\mathbb {H}}^2}\).

We will consider the following embedding of \(\mathsf {AdS}^3\) in \({{\mathbb {R}}}{{\mathbb {P}}}^{3}\):

Its image is the projectivization of the set of negative vectors for the signature (2, 2) quadratic form \(q(v) = -v_1^2 + v_3^2 - v_2 v_4\).

Proposition A.3

The standard halfspace \({\mathcal {H}}\) in \({{\mathbb {R}}}{{\mathbb {P}}}^{3}\) intersects the image of in one of the two crooked \(\mathsf {AdS}^3\) halfspaces bounded by \(C(\ell _0)\), where \(\ell _0\) is the geodesic represented by the positive imaginary axis in the Poincaré upper half plane.

Proof

The boundary of the standard halfspace is the closure of the projectivization of vectors which have signs \((+,0,+,*),(*,+,0,+),(0,+,*,-)\), or \((+,*,-,0)\).

Let us analyse each of these cases. If \(M=\begin{pmatrix} a &{} b\\ c &{} d\end{pmatrix}\) and has signs \((+,0,+,*)\), then \(b=0\) and so M fixes 0. Moreover, \(a>0\) and \(-a<d<a\) which means that 0 is a repelling fixed point.

Similarly, if has signs \((+,*,-,0)\), then \(c=0\) and M fixes \(\infty \). Now, \(d>0\) and \(-d<a<d\) so \(\infty \) is repelling.

If has signs \((*,+,0,+)\), then \(a=d\), \(b<0\) and \(c>0\). This means that M is an elliptic element fixing the point \(i\sqrt{\frac{-b}{c}}\in i {\mathbb {R}}\).

Finally, the set with signs \((0,+,*,-)\) does not intersect the image of since any vector with these signs is positive for the quadratic form q.

Conversely, any \(M\in {{\,\mathrm{PSL}\,}}(2,{\mathbb {R}})\) in the crooked plane must fall into one of these categories or their closure (if M is parabolic or the identity).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burelle, JP., Treib, N. Schottky presentations of positive representations. Math. Ann. 382, 1705–1744 (2022). https://doi.org/10.1007/s00208-021-02326-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02326-z

Navigation