Skip to main content
Log in

On the stability of the Caffarelli–Kohn–Nirenberg inequality

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we consider the Caffarelli–Kohn–Nirenberg (CKN) inequality:

$$\begin{aligned} \bigg (\int _{{\mathbb {R}}^N}|x|^{-b(p+1)}|u|^{p+1}dx\bigg )^{\frac{2}{p+1}}\le C_{a,b,N}\int _{{\mathbb {R}}^N}|x|^{-2a}|\nabla u|^2dx \end{aligned}$$

where \(N\ge 3\), \(a<\frac{N-2}{2}\), \(a\le b\le a+1\) and \(p=\frac{N+2(1+a-b)}{N-2(1+a-b)}\). It is well-known that up to dilations \(\tau ^{\frac{N-2}{2}-a}u(\tau x)\) and scalar multiplications Cu(x), the CKN inequality has a unique extremal function W(x) that is positive and radially symmetric in the parameter region \(b_{FS}(a)\le b<a+1\) with \(a<0\) and \(a\le b<a+1\) with \(a\ge 0\) and \(a+b>0\), where \(b_{FS}(a)\) is the Felli–Schneider curve. We prove that in the above parameter region the following stabilities hold:

  1. (1)

       stability of CKN inequality in the functional inequality setting

    $$\begin{aligned} dist_{D^{1,2}_{a}}^2(u, {\mathcal {Z}})\lesssim \Vert u\Vert ^2_{D^{1,2}_a({\mathbb {R}}^N)}-C_{a,b,N}^{-1}\Vert u\Vert ^2_{L^{p+1}(|x|^{-b(p+1)},{\mathbb {R}}^N)} \end{aligned}$$

    where \({\mathcal {Z}}= \{ c W_\tau \mid c\in {\mathbb {R}}\backslash \{0\}, \tau >0\}\);

  2. (2)

    stability of CKN inequality in the critical point setting (in the class of nonnegative functions)

    $$\begin{aligned} dist_{D_a^{1,2}}(u, {\mathcal {Z}}_0^\nu )\lesssim \left\{ \begin{array}{ll} \Gamma (u),&{} p>2\text { or }\nu =1,\\ \Gamma (u)|\log \Gamma (u)|^{\frac{1}{2}},&{} p=2\text { and }\nu \ge 2,\\ \Gamma (u)^{\frac{p}{2}},&{} 1<p<2\text { and }\nu \ge 2, \end{array}\right. \end{aligned}$$

    where \(\Gamma (u)=\Vert div(|x|^{-a}\nabla u)+|x|^{-b(p+1)}|u|^{p-1}u\Vert _{H^{-1}}\) and

    $$\begin{aligned} {\mathcal {Z}}_0^\nu =\{(W_{\tau _1},W_{\tau _2},\ldots ,W_{\tau _\nu })\mid \tau _i>0\}. \end{aligned}$$

Our results generalize the recent work in [7, 11, 15] on the sharp stability of profile decompositions for the special case \(a=b=0\) (the Sobolev inequality) to the above parameter region of the Caffarelli–Kohn–Nirenberg inequality. This parameter region is optimal for such stabilities in the sense that in the region \(a<b<b_{FS}(a)\) with \(a<0\), the nonnegative solution of the Euler–Lagrange equation of CKN inequality is no longer unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Problèmes isopérimétriques de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    Article  Google Scholar 

  2. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H., Lieb, E.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62, 73–86 (1985)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Catrina, F., Wang, Z.-Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chou, K., Chu, W.: On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. 48, 137–151 (1993)

    Article  MathSciNet  Google Scholar 

  7. Ciraolo, G., Figalli, A., Maggi, F.: A quantitative analysis of metrics on \({{\mathbb{R}}}^N\) with almost constant positive scalar curvature, with applications to fast diffusion flows. Int. Math. Res. Not. 2017, 6780–6797 (2018)

    Article  Google Scholar 

  8. Del Pino, M., Dolbeault, J., Musso, M.: “Bubble-tower’’ radial solutions in the slightly supercritical Brezis–Nirenberg problem. J. Differ. Equ. 193, 280–306 (2003)

    Article  MathSciNet  Google Scholar 

  9. del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri–Coron’s problem. Calc. Var. PDEs 16, 113–145 (2003)

    Article  MathSciNet  Google Scholar 

  10. del Pino, M., Musso, M., Pacard, F., Pistoia, A.: Large energy entire solutions for the Yamabe equation. J. Differ. Equ. 251, 2568–2597 (2011)

    Article  MathSciNet  Google Scholar 

  11. Deng, B., Sun, L., Wei, J.: Optimal quantitative estimates of Struew’s decomposition. Preprint. arXiv:2103.15360v1 [math.AP]

  12. Dolbeault, J., Esteban, M.J., Loss, M., Tarantello, G.: On the symmetry of extremals for the Caffarelli–Kohn–Nirenberg inequalities. Adv. Nonlinear Stud. 9, 713–726 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dolbeault, J., Esteban, M.J., Loss, M.: Symmetry of extremals of functional inequalities via spectral estimates for linear operators. J. Math. Phys. 53, 095204 (2012)

    Article  MathSciNet  Google Scholar 

  14. Dolbeault, J., Esteban, M.J., Loss, M.: Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces. Invent. math. 206, 397–440 (2016)

    Article  MathSciNet  Google Scholar 

  15. Figalli, A., Glaudo, F.: On the sharp stability of critical points of the Sobolev inequality. Arch. Ration. Mech. Anal. 237, 201–258 (2020)

    Article  MathSciNet  Google Scholar 

  16. Felli, V., Schneider, M.: Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type. J. Differ. Equ. 191, 121–142 (2003)

    Article  MathSciNet  Google Scholar 

  17. Lieb, E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118, 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  18. Lin, C.-S., Wang, Z.-Q.: Symmetry of extremal functions for the Caffarrelli–Kohn–Nirenberg inequalities. Proc. Am. Math. Soc. 132, 1685–1691 (2004)

    Article  MathSciNet  Google Scholar 

  19. Lin, T.-C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({{\mathbb{R}}}^n\), \(n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  Google Scholar 

  20. Radulescu, V., Smets, D., Willem, M.: Hardy–Sobolev inequalities with remainder terms. Topol. Methods Nonlinear Anal. 20, 145–149 (2002)

    Article  MathSciNet  Google Scholar 

  21. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MathSciNet  Google Scholar 

  22. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, vol. xviii+274, 3rd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  23. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  24. Wang, Z.-Q., Willem, M.: Singular minimization problems. J. Differ. Equ. 161, 307–320 (2000)

    Article  MathSciNet  Google Scholar 

  25. Wei, J., Wu, Y.: Ground states of nonlinear elliptic systems with mixed couplings. J. Math. Pures Appl. 141, 50–88 (2020)

    Article  MathSciNet  Google Scholar 

  26. Wei, J., Yan, S.: Arbitrary many boundary peak solutions for an elliptic Neumann problem with critical growth. J. Math. Pures Appl. 88, 350–378 (2007)

    Article  MathSciNet  Google Scholar 

  27. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on \({\mathbb{S}}^N\). J. Funct. Anal. 258, 3048–3081 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for very carefully reading the manuscript and wonderful valuable comments that greatly improve this paper. The research of J. Wei is partially supported by NSERC of Canada, and the research of Y. Wu is supported by NSFC (nos. 11971339, 12171470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanze Wu.

Additional information

Communicated by Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Wu, Y. On the stability of the Caffarelli–Kohn–Nirenberg inequality. Math. Ann. 384, 1509–1546 (2022). https://doi.org/10.1007/s00208-021-02325-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02325-0

Mathematics Subject Classification

Navigation