Skip to main content
Log in

Congruent numbers, quadratic forms and \(K_2\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give a new and self-contained proof for an alternative form of Tunnell’s theorem on congruent numbers. The proof relies on more knowledge on quadratic forms with less calculation than Tunnell’s proof. The approach is based on our observation that the equality \(\#\{(x,y,z,w) \in \mathbb {Z}^4|p=2x^2+3y^2+3z^2+4w^2+2yz\}=\#\{(x,y,z) \in \mathbb {Z}^3|p^2=2x^2+4y^2+9z^2-4yz\}\) holds for any odd prime p. The same method is applied to the elliptic curves \(E_n:~y^2=x^3+n^2x\) and \(E_{n}:~~y^2=x(x-n)(x+3n)(E_{-n}:~~y^2=x(x+n)(x-3n))\)(\(\pi /3\)(\(2\pi /3\))-congruent elliptic curves), where we list, without proof, the analogous results. A series of criteria for congruent numbers are given. In particular, for a prime p, we show that if \(p\equiv 1\pmod {8}\) is a congruent number then the 8-rank of \(K_2O_{\mathbb {Q}(\sqrt{p})}\) equals one;  if \(p\equiv 1\pmod {16}\) with \(h(-p)\not \equiv h(-2p)\pmod {16}\) then 2p is not a congruent number; and if \(p\equiv 1, q\equiv 3\pmod {8}\) are two primes with \(h(-pq)\not \equiv h(-p)\pmod {8}\) then pq is not a congruent number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrucand, P., Cohn, H.: Note on primes of type \(x^2+ 32y^2\), class number, and residuacity. J. Reine Angew. Math. 238, 67–70 (1969)

    MathSciNet  MATH  Google Scholar 

  2. Bastein, L.: Nombers congruents. Intermëdiaire Math. 22, 231–232 (1915)

    Google Scholar 

  3. Birch, B.J.: Elliptic curves and modular functions. In: Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pp. 27–32. Academic Press, London (1970)

    Google Scholar 

  4. Birch, B.J., Stephens, N.M.: Computation of Heegner points. In: Em Modular Forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res, pp. 13–41. Chichester, Horwood (1984)

    Google Scholar 

  5. Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. II. J. Reine Angew. Math. 218, 79–108 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birch, B.J., Kuyk, W.: Tables on elliptic curves. In: Modular Functions of One Variable IV. Lecture Notes in Mathematics, vol. 476, pp. 81–373. Springer, Berlin (1979)

    Chapter  Google Scholar 

  7. Candiotti, A., Kramer, K.: On the 2-Sylow subgroup of the Hilbert kernel of \(K_2\) of number fields. Acta Arith. 52, 49–65 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coates, J.: Congruent numbers. Proc. Natl. Acad. Sci. USA 109(52), 21182–21183 (2012)

    Article  MATH  Google Scholar 

  9. Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton–Dyer. Invent. Math. 39(3), 223–251 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, H., Oesterle, J.: Dimension des espaces de formes modulaires. In: Modular Functions of One Variable VI. Lecture Notes in Mathematics, vol. 627, pp. 69–78. Springer, Berlin (1977)

    Chapter  Google Scholar 

  11. Dickson, L.E.: History of the Theory of Numbers, Vol II: Diophantine Analysis. Chelsea Publishing Co., New York (1966)

    MATH  Google Scholar 

  12. Earnest, A.G., Hsia, J.S., Hung, D.C.: Primitive representations by spinor genera of ternary quadratic forms. J. Lond. Math. Soc. 50(2), 222–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, K.Q.: Non-congruent numbers, odd graphs and the Birch–Swinnerton–Dyer conjecture. Acta Arith. 75(1), 71–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flicker, Y.: Automorphic forms on covering groups of GL(2). Invent. Math. 57, 119–182 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garland, H.: A finiteness theorem for \(K_{2}\) of a number field. Ann. Math. 94(2), 534–548 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fujiwara, M.: \(\theta \)-congruent numbers. In: Gyory, K., et al. (eds.) Number Theory (Eger, 1996), pp. 235–241. de Gruyter, Berlin (1998)

    Google Scholar 

  17. Goldfeld, D.: Conjectures on elliptic curves over quadratic fields. In: Number Theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Mathematics, vol. 751, pp. 108–118. Springer, Berlin (1979)

    Google Scholar 

  18. Gross, B.H.: Kolyvagin’s work on modular elliptic curves. In: \(L\)-Functions and Arithmetic (Durham, 1989), London Mathematical Society, Lecture Note Series, vol. 153, pp. 235–256. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  19. Gross, B.H., Zagier, D.B.: Heegner points and derivatives of \(L\)-series. Invent. Math. 84(2), 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hanke, J.: Local densities and explicit bounds for representability by a quadratric form. Duke Math. J. 1242, 351–388 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Heath-Brown, D.R.: The size of Selmer group for the congruent number problem. Invent. Math. 118, 331–370 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heegner, K.: Diophantische analysis und modulfunktionen. Math. Z. 56, 227–253 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji, Q.Z., Qin, H.R.: CM elliptic curves and primes captured by quadratic polynomials. Asian J. Math. 18, 707–726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kan, M.: \(\theta \)-congruent numbers and elliptic curves. Acta Arith. 94(2), 153–160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Mathematics, vol. 97, 2nd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  26. Kudla, S., Rallis, S.: On the Weil-Siegel formula. J.Reine Angew. Math. 387, 1–68 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Kudla, S., Rallis, S.: On the Weil–Siegel formula, II: The isotropic convergent case. J.Reine Angew. Math. 391, 65–84 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Lagrange, L.: Nombres congruents et courbes elliptiques, Sem. Delange-Pisot-Poitou,16e annee, 1974/75 (16)

  29. Li, D.L., Tian, Y.: On the Birch–Swinnerton–Dyer conjecture of elliptic curves \(E_D: y^2=x^3-D^2x\). Acta Math. Sin. (Engl. Ser.) 16(2), 229–236 (2000)

    Article  MathSciNet  Google Scholar 

  30. Li, D.L., Zhao, C.L.: Representation of integers by ternary quadratic forms. Acta Math Sin. 17, 715–720 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mazur, B., Wiles, A.: Class fields of abelian extensions of \({\mathbb{Q}}\). Invent. Math. 76(2), 179–330 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miyake, T.: Modular Forms. Springer Monographs in Mathematics (ISBN 3-540-50268-8)

  33. Monsky, P.: Mock Heegner points and congruent numbers. Math. Z. 204(1), 45–67 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ouyang, Y., Zhang, S.X.: On non-congruent numbers with \(1\) modulo \(4\) prime factors. Sci. China Math. 57(3), 649–658 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pizer, A.: On the 2-part of the class number of imaginary quadratic number fields. J. Number Theory. 8, 184–192 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qin, H.R.: The \(2\)-Sylow subgroups of the tame kernel of imaginary quadratic fields. Acta Arith. 69(2), 153–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qin, H.R.: The \(4\)-rank of \(K_2O_F\) for real quadratic fields \(F\). Acta Arith. 72(4), 323–333 (1995)

    Article  MathSciNet  Google Scholar 

  38. Qin, H.R.: Tame kernels and Tate kernels of quadratic number fields. J. Reine Angew. Math. 530, 105–144 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Qin, H.R.: The \(2\)-Sylow subgroup of \(K_2\) for number fields \(F\). J. Algebra 284, 494–519 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Razar, M.J.: A relation between the two-component of the Tate–Shafarevich group and L(1) for certain elliptic curves. Am. J. Math. 96, 127–144 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shimura, G.: On modular forms of half integral weight. Ann. Math. 97(2), 440–481 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11. Princeton University Press, Princeton (1994). (Reprint of the 1971 original, Kano Memorial Lectures, 1)

  43. Siegel, C.L.: Uber die analytische Theorie der quadratischen Formen. Ann. Math. (2) 36, 527–606 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  44. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, Dordrecht (2009)

    Book  Google Scholar 

  45. Stephens, N.M.: Congruence properties of congruent numbers. Bull. Lond. Math. Soc. 7, 182–184 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tian, Y.: Congruent numbers with many prime factors. Proc. Natl. Acad. Sci. USA 109(52), 21256–21258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tian, Y.: Congruent numbers and Heegner points. Camb. J. Math. 2(1), 117–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tian, Y., Yuan, X.Y., Zhang, S.W.: Genus periods, genus points and congruent number problem. Asian J. Math. 21, 721–774 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tie, G.Q.: On certain computational problems on tiling numbers and congruent numbers, Ph.D Thesis, The University of Chinese Academy of Sciences (2021)

  50. Top, J., Yui, N.: Congruent number problems and their variants. Algorithmic Number Theory 44, 613–639 (2008)

    MathSciNet  MATH  Google Scholar 

  51. Tunnell, J.B.: A classical Diophantine problem and modular forms of weight \(3/2\). Invent. Math. 72(2), 323–334 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Waldspurger, J.L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. 60(4), 375–484 (1981)

    MathSciNet  MATH  Google Scholar 

  53. Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. 131(3), 493–540 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wiles, A.: Modular elliptic curves and Fermat‘s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Williams, K.: On the class number of \({\mathbb{Q}}(\sqrt{p})\) modulo \(16\), for \(p\equiv 1\) (mod 8) a prime. Acta Arith. 39(4), 381–398 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang, T.H.: An explicit formula for local densities of quadratic forms. J. Number Theory 722, 309–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yoshida, S.: Some variants of the congruent number problem I. Kyushu J. Math. 55(2), 387–404 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yoshida, S.: Some variants of the congruent number problem II. Kyushu J. Math. 56, 147–165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yoshida, S.: Some variants of the congruent number problem III. preprint

Download references

Acknowledgements

The author would like to thank the referees for careful reading and many valuable comments and suggestions. In particular, he would like to thank the referees for letting him know the existence of Li and Zhao’s paper [30]. He would also like to thank Professors J. W. Hoffman and Y. Tian for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hourong Qin.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Qin: Supported by NSFC (Nos.11571163, 11631009), SQ2020YFA070208.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H. Congruent numbers, quadratic forms and \(K_2\). Math. Ann. 383, 1647–1686 (2022). https://doi.org/10.1007/s00208-021-02263-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02263-x

Navigation