Skip to main content
Log in

Non-amenable tight squeezes by Kirchberg algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give a framework to produce C\(^*\)-algebra inclusions with extreme properties. This gives the first constructive nuclear minimal ambient C\(^*\)-algebras. We further obtain a purely infinite analogue of Dadarlat’s modeling theorem on AF-algebras: Every Kirchberg algebra is rigidly and KK-equivalently sandwiched by non-nuclear C\(^*\)-algebras without intermediate C\(^*\)-algebras. Finally we reveal a novel property of Kirchberg algebras: They embed into arbitrarily wild C\(^*\)-algebras as rigid maximal C\(^*\)-subalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, C.A., Anderson, J., Pedersen, G.K.: Excising states of \(C^\ast \)-algebras. Can. J. Math. 38, 1239–1260 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anantharaman-Delaroche, C.: Action moyennable d’un groupe localement compact sur une algèbre de von Neumann. Math. Scand. 45, 289–304 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anantharaman-Delaroche, C.: Systèmes dynamiques non commutatifs et moyennabilité. Math. Ann. 279, 297–315 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anantharaman-Delaroche, C.: Amenability and exactness for dynamical systems and their \(C^\ast \)-algebras. Trans. Am. Math. Soc. 354(10), 4153–4178 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and \(K\)-theory of group \(C^\ast \)-algebras. Contemp. Math. 167, 241–291 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Blackadar, B.: K-Theory for Operator Algebras, vol. 5, 2nd edn. Mathematical Sciences Research Institute Publications, Berkeley (1998)

    MATH  Google Scholar 

  7. Breuillard, E., Kalantar, M., Kennedy, M., Ozawa, N.: \(C^\ast \)-simplicity and the unique trace property for discrete groups. Publ. Math. I.H.É.S 126, 35–71 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, L.G., Pedersen, G.K.: \(C^\ast \)-algebras of real rank zero. J. Funct. Anal. 99, 131–149 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, N.P., Ozawa, N.: \(C^\ast \)-Algebras and Finite-Dimensional Approximations. Graduate Studies in Mathematics, vol. 88. American Mathematical Society, Providence (2008)

    Google Scholar 

  10. Chifan, I., Das, S.: Rigidity results for von Neumann algebras arising from mixing extensions of profinite actions of groups on probability spaces. Math. Ann. 378, 907–950 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuntz, J.: K-theory for certain \(C^\ast \)-algebras. Ann. Math. 113, 181–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dadarlat, M.: Nonnuclear subalgebras of AF-algebras. Am. J. Math. 122(2), 581–597 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dadarlat, M., Pennig, U.: A Dixmier–Douady theory for strongly self-absorbing \(C^\ast \)-algebras. J. Reine Angew. Math. 718, 153–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. de la Harpe, P., Skandalis, G.: Powers’ property and simple \(C^\ast \)-algebras. Math. Ann. 273, 241–250 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dykema, K.: Factoriality and Connes’ invariant \(T(M)\) for free products of von Neumann algebras. J. Reine Angew. Math. 450, 159–180 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Dykema, K.: Simplicity and the stable rank of some free product \(C^\ast \)-algebras. Trans. Am. Math. Soc. 351, 1–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elliott, G. A., Gong, G., Lin, H., Niu, Z.: On the classification of simple amenable \(C^\ast \)-algebras with finite decomposition rank II. arXiv:1507.03437 (Preprint)

  18. Ge, L.: On “Problems on von Neumann algebras by R. Kadison, 1967’’. Acta Math. Sin. 19(3), 619–624 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ge, L., Kadison, R.: On tensor products of von Neumann algebras. Invent. Math. 123, 453–466 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haagerup, U., Kraus, J.: Approximation properties for group \(C^\ast \)-algebras and group von Neumann algebras. Trans. Am. Math. Soc. 344, 667–699 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Hamana, M.: Injective envelopes of operator systems. Publ. Res. Inst. Math. Sci. 15(3), 773–785 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamana, M.: Injective envelopes of \(C^\ast \)-algebras. J. Math. Soc. Jpn. 31, 181–197 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamana, M.: Injective envelopes of \(C^\ast \)-dynamical systems. Tohoku Math. J. (2) 37, 463–487 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Higson, N.: Bivariant \(K\)-theory and the Novikov conjecture. Geom. Funct. Anal. 10(3), 563–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Higson, N., Kasparov, G.: \(E\)-theory and \(KK\)-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144(1), 23–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Izumi, M., Longo, R., Popa, S.: A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155(1), 25–63 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Izumi, M., Matui, H.: Poly-\(\mathbb{Z}\) group actions on Kirchberg algebras I. To appear in Int. Math. Res. Not. arXiv:1810.05850

  28. Izumi, M., Matui, H.: Poly-\(\mathbb{Z}\) group actions on Kirchberg algebras II. Invent. Math. 224, 699–766 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kalantar, M., Kennedy, M.: Boundaries of reduced \(C^\ast \)-algebras of discrete groups. J. Reine Angew. Math. 727, 247–267 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Kirchberg, E.: The classification of purely infinite \(C^\ast \)-algebras using Kasparov’s theory. (Preprint)

  31. Kirchberg, E., Phillips, N.C.: Embedding of exact \(C^\ast \)-algebras in the Cuntz algebra \(\cal{O}_2\). J. Reine Angew. Math. 525, 17–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kishimoto, A.: Outer automorphisms and reduced crossed products of simple \(C^\ast \)-algebras. Commun. Math. Phys. 81(3), 429–435 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kishimoto, A., Ozawa, N., Sakai, S.: Homogeneity of the pure state space of a separable \(C^\ast \)-algebra. Can. Math. Bull. 46, 365–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lance, E.C.: Hilbert \(C^\ast \)-Modules: A Toolkit for Operator Algebraists. LMS Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  35. Longo, R.: Simple injective subfactors. Adv. Math. 63, 152–171 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Matui, H., Sato, Y.: Decomposition rank of UHF-absorbing \(C^\ast \)-algebras. Duke Math. J. 163(14), 2687–2708 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Neshveyev, S., Størmer, E.: Ergodic theory and maximal abelian subalgebras of the hyperfinite factor. J. Funct. Anal. 195(2), 239–261 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozawa, N.: Boundaries of reduced free group \(C^\ast \)-algebras. Bull. Lond. Math. Soc. 39, 35–38 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ozawa, N.: Examples of groups which are not weakly amenable. Kyoto J. Math. 52, 333–344 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pedersen, G.: \(C^\ast \)-algebras and their automorphism groups. 2nd Edition

  41. Phillips, N.C.: A classification theorem for nuclear purely infinite simple \(C^\ast \)-algebras. Doc. Math. 5, 49–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pimsner, M.V.: KK-groups of crossed products by groups acting on trees. Invent. Math. 86(3), 603–634 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pimsner, M.V.: A Class of \(C^\ast \)-Algebras Generalizing Both Cuntz–Krieger Algebras and Crossed Products by \(\mathbb{Z}\). Free Probability Theory. Fields Institute Communications, vol. 12, pp. 189–212. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  44. Pimsner, M., Voiculescu, D.: Exact sequences for K-groups and Ext-groups of certain cross-products of \(C^\ast \)-algebras. J. Oper. Theory 4, 93–118 (1980)

    MathSciNet  MATH  Google Scholar 

  45. Pimsner, M., Voiculescu, D.: K-groups of reduced crossed products by free groups. J. Oper. Theory 8, 131–156 (1982)

    MathSciNet  MATH  Google Scholar 

  46. Popa, S.: On a problem of R.V. Kadison on maximal abelian \(\ast \)-subalgebras in factors. Invent. Math. 65, 269–281 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Popa, S.: Maximal injective subalgebras in factors associated with free groups. Adv. Math. 50, 27–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. Proc. ICM I, 445–477 (2006)

    MATH  Google Scholar 

  49. Powers, R.T.: Simplicity of the \(C^\ast \)-algebra associated with the free group on two generators. Duke Math. J. 42, 151–156 (1975)

    MathSciNet  MATH  Google Scholar 

  50. Rørdam, M.: Classification of Nuclear, Simple \(C^\ast \)-Algebras. vol. 126 of Encyclopaedia Mathematics Science, pp. 1–145. Springer, Berlin (2002)

    Google Scholar 

  51. Suzuki, Y.: Group \(C^\ast \)-algebras as decreasing intersection of nuclear \(C^\ast \)-algebras. Am. J. Math. 139(3), 681–705 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Suzuki, Y.: Minimal ambient nuclear \(C^\ast \)-algebras. Adv. Math. 304, 421–433 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Suzuki, Y.: Simple equivariant \(C^\ast \)-algebras whose full and reduced crossed products coincide. J. Noncommut. Geom. 13, 1577–1585 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Suzuki, Y.: Complete descriptions of intermediate operator algebras by intermediate extensions of dynamical systems. Commun. Math. Phys. 375, 1273–1297 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Suzuki, Y.: Rigid sides of approximately finite dimensional simple operator algebras in non-separable category. Int. Math. Res. Not. 2021, 2166–2190 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  56. Suzuki, Y.: On pathological properties of fixed point algebras in Kirchberg algebras. Proc. R. Soc. Edinburgh Sect. A 150(6), 3087–3096 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tikuisis, A., White, S., Winter, W.: Quasidiagonality of nuclear \(C^\ast \)-algebras. Ann. Math. (2) 185, 229–284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Winter, W.: Structure of nuclear \(C^\ast \)-algebras: From quasidiagonality to classification, and back again. Proc. Int. Congr. Math. 20, 1797–1820 (2017)

    Google Scholar 

  59. Zacharias, J.: Splitting for subalgebras of tensor products. Proc. Am. Math. Soc. 129, 407–413 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, S.: A property of purely infinite simple \(C^\ast \)-algebras. Proc. Am. Math. Soc. 109, 717–720 (1990)

    MathSciNet  MATH  Google Scholar 

  61. Zsido, L.: A criterion for splitting \(C^\ast \)-algebras in tensor products. Proc. Am. Math. Soc. 128, 2001–2006 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Parts of the present work are greatly improved during the author’s visiting in Research Center for Operator Algebras (Shanghai) for the conference “Special Week on Operator Algebras 2019”. He is grateful to the organizers of the conference for kind invitation. This work was supported by JSPS KAKENHI Early-Career Scientists (No. 19K14550) and tenure track funds of Nagoya University. Finally, he would like to thank the second reviewer for helpful comments which improve some explanations of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhei Suzuki.

Additional information

Communicated by Andreas Thom.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Tensor splitting theorem for non-unital simple C\(^*\)-algebras

Appendix A. Tensor splitting theorem for non-unital simple C\(^*\)-algebras

Here we record a few necessary and useful technical lemmas on non-unital C\(^*\)-algebras. Although these results would be known for some experts, we do not know an appropriate reference. As a result of these lemmas, we obtain the tensor splitting theorem (cf. [19, 59, 61]) for non-unital simple C\(^*\)-algebras.

An element of a C\(^*\)-algebra A is said to be full if it generates A as a closed ideal of A.

Lemma A.1

Let A be a C\(^*\)-algebra. Let a be a full positive element of A. Then for any finite subset F of A and any \(\epsilon >0\), there is a sequence \(x_1, \ldots , x_n\in A\) satisfying

$$\begin{aligned} \left\| \sum _{i=1}^n x_i a x_i^*\right\| \le 1 \qquad \mathrm{~and~} \qquad \left\| \sum _{i=1}^n x_i a x_i^*b-b\right\| <\epsilon \quad \mathrm{~for~} b\in F. \end{aligned}$$

Proof

Observe that for any sequence \(x_1, \ldots , x_n\in A\) and any \(b\in F\), the C\(^*\)-norm condition implies

$$\begin{aligned} \left\| \sum _{i=1}^n x_i a x_i^*b-b\right\| \le \left\| \sum _{i=1}^n x_i a x_i^*c-c\right\| , \end{aligned}$$

where \(c:= \left( \sum _{d\in F}d d^*\right) ^{1/2}\). Therefore we only need to show the statement when F is a singleton in \(A_+\). By the fullness of a, we may further assume that the element b in F is of the form \(\sum _{i=1}^n y_i a z_i\); \(y_1, \ldots , y_n, z_1, \ldots , z_n \in A\). In this case, we have

$$\begin{aligned} b^2 = b^*b =\sum _{i, j=1}^n z_i^*a y_i^*y_j a z_j \le C \sum _{i=1}^n z_i^*a z_i, \end{aligned}$$

where \(C:= \Vert a\Vert \Vert (y_i^*y_j)_{1\le i, j \le n}\Vert _{\mathbb {M}_n(A)}\). Put \(w:= \left( \sum _{i=1}^n z_i^*a z_i \right) ^{1/2}\). Choose a sequence \((f_k)_{k=1}^\infty \) in \(C_0(]0, \infty [)_+\) satisfying \(t f_k(t)\le 1\) for all \(k\in \mathbb {N}\) and all \(t\in [0, \infty [\), and \(\lim _{k \rightarrow \infty } tf_k(t)=1\) uniformly on compact subsets of \(]0, \infty [\). Then, for each \(k\in {\mathbb {N}}\), we have

$$\begin{aligned} \sum _{i=1}^n f_k(w)z_i^*a z_i f_k(w) = f_k(w)^2 w^2\le 1,\\ \left\| \sum _{i=1}^n f_k(w) z_i^*a z_i f_k(w) b-b\right\| \le \sqrt{C} \Vert ( w^2 f_k(w)^2-1)w\Vert . \end{aligned}$$

The last term tends to zero as \(k\rightarrow \infty \). Therefore, for a sufficiently large \(N\in {\mathbb {N}}\), the sequence \((f_N(w)z_i^*)_{i=1}^n\) satisfies the required conditions. \(\square \)

For simple C\(^*\)-algebras, one can strengthen Lemma A.1 as follows.

Lemma A.2

Let A be a simple C\(^*\)-algebra. Let \(a\in A_+ {\setminus } \{0\}\). Then for any \(b\in A_+\) and any \(\epsilon >0\), there is a sequence \(x_1, \ldots , x_n\in A\) satisfying

$$\begin{aligned} \left\| \sum _{i=1}^n x_i x_i^*\right\| \le \Vert a\Vert ^{-1}\Vert b\Vert ,\qquad \sum _{i=1}^n x_i a x_i^*\approx _\epsilon b. \end{aligned}$$

Proof

We may assume \(\Vert a\Vert =\Vert b\Vert =1\). Take \(f \in C([0, 1])_+\) satisfying \(f(1)\ne 0\) and \({{\,\mathrm{supp}\,}}(f)\subset [1- \epsilon /2, 1]\). Then

$$\begin{aligned} f(a)\ne 0,\qquad \left( 1- \frac{\epsilon }{2}\right) f(a)^2 \le f(a) a f(a) \le f(a)^2. \end{aligned}$$

Applying Lemma A.1 to \(f(a)^2\) and \(F=\{b^{1/2}\}\), we obtain a sequence \(y_1, \ldots , y_n \in A\) satisfying

$$\begin{aligned} \left\| \sum _{i=1}^n y_i f(a)^2 y_i^*\right\| \le 1,\qquad \left\| \sum _{i=1}^n y_i f(a)^2 y_i^*b^{\frac{1}{2}}-b^{\frac{1}{2}}\right\| < \frac{\epsilon }{2}. \end{aligned}$$

Set \(x_i:=b^{1/2}y_i f(a) \) for \(i=1, \ldots , n\). Then

$$\begin{aligned} \sum _{i=1}^n x_ix_i^*= \sum _{i=1}^n b^{\frac{1}{2}} y_i f(a)^2 y_i^*b^{\frac{1}{2}} \le 1. \end{aligned}$$

Straightforward estimations show that

$$\begin{aligned} \sum _{i=1}^n x_i a x_i^*\approx _{ \epsilon /2} \sum _{i=1}^n b^{\frac{1}{2}} y_i f(a)^2 y_i^*b^{\frac{1}{2}} \approx _{ \epsilon /2} b. \end{aligned}$$

Therefore \(x_1, \ldots , x_n\) form the desired sequence. \(\square \)

As an application of Lemma A.2, one can remove the unital condition from the tensor splitting theorem [59, 61] (cf. [19]). For a C\(^*\)-subalgebra C of \(A\otimes B\), we define the subset \(\mathcal {S}_A(C)\) of B to be

$$\begin{aligned} \mathcal {S}_A(C):=\left\{ (\varphi \otimes \text{ id}_B)(c): \varphi \in A^*, c\in C\right\} . \end{aligned}$$

Theorem A.3

Let A be a simple C\(^*\)-algebra and B be a C\(^*\)-algebra. Let C be a C\(^*\)-subalgebra of \(A\otimes B\) closed under multiplications by A. Then \(\mathcal {S}_A(C)\) forms a C\(^*\)-subalgebra of C and satisfies \(A \otimes \mathcal {S}_A(C) \subset C\). Thus, when A satisfies the strong operator approximation property [20] or when the inclusion \(\mathcal {S}_A(C) \subset B\) admits a completely bounded projection, we have \(C= A\otimes \mathcal {S}_A(C)\).

Proof

To show the first statement, it suffices to show the following claim. For any pure state \(\varphi \) on A and any \(a\in A_+\), \(c\in C\), with \(b := (\varphi \otimes \text{ id}_B)(c)\), we have \(a\otimes b \in C\). Indeed the claim implies that, since the set of pure states on A spans a weak-\(*\) dense subspace of \(A^*\) and \(A_+\) spans A, for any \(a\in A\) and any \(\psi \in A^*\) with \(\psi (a)\ne 0\), the subspace \(X:=(\psi \otimes \text{ id}_B)(C)\) of B satisfies \(a \otimes X =(a\otimes B) \cap C\). This implies \(X=\mathcal {S}_A(C)\), and proves the first statement. To show the claim, for any \(\epsilon >0\), by the Akemann–Anderson–Pedersen excision theorem [1] (Theorem 1.4.10 in [9]), one can take \(e\in A_+\) with \(\Vert e\Vert =1\), \(e c e \approx _{\epsilon } e^2\otimes b\). By Lemma A.2, there is a sequence \(x_1, \ldots , x_n \in A\) satisfying \(\sum _{i=1}^n x_ie c ex_i^*\approx _{\epsilon } a\otimes b\). The left term is contained in C by assumption. Thus \(a\otimes b \in C\).

For the last statement, when A satisfies the strong operator approximation property, the claim follows from Theorem 12.4.4 in [9]. When we have a completely bounded projection \(P:B \rightarrow \mathcal {S}_A(C)\), it is not hard to see that for any \(\varphi \in A^*\), \((\varphi \otimes \text{ id}_B)((\text{ id}_A \otimes P)(c)-c)=0\) for all \(c\in C\). This proves \((\text{ id}_A \otimes P)|_C=\text{ id}_C\) and thus \(C\subset A \otimes \mathcal {S}_A(C)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y. Non-amenable tight squeezes by Kirchberg algebras. Math. Ann. 382, 631–653 (2022). https://doi.org/10.1007/s00208-021-02262-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02262-y

Mathematics Subject Classification

Navigation