Skip to main content
Log in

Noncommutative Choquet simplices

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We introduce a notion of noncommutative Choquet simplex, or briefly an nc simplex, that generalizes the classical notion of a simplex. While every simplex is an nc simplex, there are many more nc simplices. They arise naturally from C*-algebras and in noncommutative dynamics. We characterize nc simplices in terms of their geometry and in terms of structural properties of their corresponding operator systems. There is a natural definition of nc Bauer simplex that generalizes the classical definition of a Bauer simplex. We show that a compact nc convex set is an nc Bauer simplex if and only if it is affinely homeomorphic to the nc state space of a unital C*-algebra, generalizing a classical result of Bauer for unital commutative C*-algebras. We obtain several applications to noncommutative dynamics. We show that the set of nc states of a C*-algebra that are invariant with respect to the action of a discrete group is an nc simplex. From this, we obtain a noncommutative ergodic decomposition theorem with uniqueness. Finally, we establish a new characterization of discrete groups with Kazhdan’s property (T) that extends a result of Glasner and Weiss. Specifically, we show that a discrete group has property (T) if and only if for every action of the group on a unital C*-algebra, the set of invariant states is affinely homeomorphic to the state space of a unital C*-algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E.: Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 57. Springer, Berlin (1971)

    Book  Google Scholar 

  2. Alfsen, E., Shultz, F.: Geometry of State Spaces of Operator Algebras. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  3. Arveson, W.: Subalgebras of C*-algebras. Acta Math. 123, 141–224 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arveson, W.: The noncommutative Choquet boundary. J. Am. Math. Soc. 21, 1065–1084 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bichteler, K.: A generalization to the non-separable case of Takesaki’s duality theorem for C*-algebras. Invent. Math. 9(1970), 89–98 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  7. Brown, N., Ozawa, N.: C*-Algebras and Finite-Dimensional Approximations. American Mathematical Society, Providence (2008)

    Book  MATH  Google Scholar 

  8. Behrends, E., Wittstock, G.: Tensorprodukte kompakter konvexer Mengen. Invent. Math. 10, 251–266 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi, M.D., Effros, E.: Injectivity and operator spaces. J. Funct. Anal. 24, 156–209 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davidson, K.R., Dor-On, A., Shalit, O.M., Solel, B.: Dilations, inclusions of matrix convex sets, and completely positive maps. Int. Math. Res. Not. 20, 4069–4130 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Davidson, K.R., Kennedy, M.: The Choquet boundary of an operator system. Duke Math. J. 164, 2989–3004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davidson, K., Kennedy M.: Choquet order and hyperrigidity for function systems. arXiv:1608.02334v3 (arXiv preprint) (2016)

  13. Davidson, K., Kennedy, M.: Noncommutative Choquet theory. arXiv:1905.08436v2 (arXiv preprint) (2019)

  14. Dixmier, J.: C*-Algebras. North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

  15. Effros, E.: Injectives and Tensor Products for Convex Sets and C*-Algebras. NATO Advanced Study Institute, University College of Swansea, Wales (1972)

    MATH  Google Scholar 

  16. Effros, E., Winkler, S.: Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems. J. Funct. Anal. 144, 117–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feldman, J.: Representations of invariant measures (Unpublished notes) (1963)

  18. Glasner, E., Weiss, B.: Kazhdan’s property T and the geometry of the collection of invariant measures. Geom. Funct. Anal. 7, 917–935 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, K.H., Paulsen, V.: An approximation theorem for nuclear operator systems. J. Funct. Anal. 261, 999–1009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helton, J.W., McCullough, S.: Every convex free basic semi-algebraic set has an LMI representation. Ann. Math. 20, 979–1013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Helton, J.W., Klep, I., McCullough, S.: The matricial relaxation of a linear matrix inequality. Math. Program. 138, 401–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Helton, J.W., Klep, I., McCullough, S., Schweighofer, M.: Dilations, linear matrix inequalities, the matrix cube problem and beta distributions. Mem. Am. Math. Soc. 20, 257 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Helton, J.W., McCullough, S., Vinnikov, V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kavruk, A.: The weak expectation property and Riesz interpolation. arXiv:1201.5414v1 (arXiv preprint) (2012)

  25. Kavruk, A.: Relative weak injectivity for operator systems. arXiv:1802.06917v1 (arXiv preprint) (2018)

  26. Kavruk, A., Paulsen, V., Todorov, I., Tomforde, M.: Tensor products of operator systems. J. Funct. Anal. 261, 267–299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kennedy, M., Schafhauser, C.: Noncommutative boundaries and the ideal structure of reduced crossed products. Duke Math. J. 168, 3215–3260 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kirchberg, E.: On restricted perturbations in inverse images and a description of normalizer algebras in \(C^*\)-algebras. J. Funct. Anal. 129, 1–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kirchberg, E., Wassermann, S.: C*-algebras generated by operator systems. J. Funct. Anal. 155, 324–351 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lanford, O., Ruelle, D.: Integral representations of invariant states on B*-algebras. J. Math. Phys. 8, 1460–1463 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lukeš, J., Malý, J., Netuka, I.I., Spurný, J.: Integral representation theory, De Gruyter studies in mathematics, 35, Applications to convexity. Banach Spaces and Potential Theory. Walter de Gruyter & Co., Berlin (2010)

    MATH  Google Scholar 

  32. Lindenstrauss, J., Olsen, G., Sternfeld, Y.: The Poulsen simplex. Ann. Inst. Fourier 28, 91–114 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lupini, M.: Uniqueness, universality, and homogeneity of the noncommutative Gurarij space. Adv. Math. 298, 286–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lupini, M.: Fraïssé limits in functional analysis. Adv. Math. 338, 93–174 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lupini, M.: The Kirchberg–Wassermann operator system is unique. J. Math. Anal. Appl. 459, 1251–1259 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Namioka, I., Phelps, R.: Tensor products of compact convex sets. Pac. J. Math. 31, 469–480 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  37. Paulsen, V.: Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  38. Paulsen, V., Todorov, I., Tomforde, M.: Operator system structures on ordered spaces. Proc. Lond. Math. Soc. 102, 25–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pedersen, G.: C*-algebras and their automorphism groups. Lond. Math. Soc. Monogr. 32, 14 (1979)

    Google Scholar 

  40. Phelps, R.: Lecture’s on Choquet’s Theorem. Lecture notes in mathematics, vol. 1757, 2nd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  41. Pisier, G.: Introduction to Operator Space Theory, vol. 294. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  42. Poulsen, E.: A simplex with dense extreme points. Ann. Inst. Fourier 11, 83–87, XIV (1961)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  44. Segal, I.E.: A class of operator algebras determined by groups. Duke Math. J. 18, 221–265 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  45. Webster, C., Winkler, S.: The Krein–Milman theorem in operator convexity. Trans. Am. Math. Soc. 351, 307–322 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wittstock, G.: Ein operatorwertiger Hahn–Banach Satz. J. Funct. Anal. 40, 127–150 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is grateful to Martino Lupini for enlightening conversations about the classical Poulsen simplex and the Kirchberg–Wassermann operator system. The authors thank Jamie Gabe for pointing out the reference [28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Shamovich.

Additional information

Communicated by Andreas Thom.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

First author supported by NSERC Grant Number 50503-10787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, M., Shamovich, E. Noncommutative Choquet simplices. Math. Ann. 382, 1591–1629 (2022). https://doi.org/10.1007/s00208-021-02261-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02261-z

Mathematics Subject Classification

Navigation