Skip to main content
Log in

On a converse theorem for \({\mathrm {G}}_2\) over finite fields

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we prove certain multiplicity one theorems and define twisted gamma factors for irreducible generic cuspidal representations of split \(\mathrm {G}_2\) over finite fields k of odd characteristic. Then we prove the first converse theorem for exceptional groups, namely, \({\mathrm {GL}}_1\) and \({\mathrm {GL}}_2\)-twisted gamma factors will uniquely determine an irreducible generic cuspidal representation of \({\mathrm {G}}_2(k)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This relation is not explicitly given in [15]. Due to its importance for our calculation, we give some details in this footnote. Let \(\varphi _\alpha : {\mathrm {SL}}_2(k)\rightarrow {\mathrm {G}}_2(k)\) be the embedding such that \(\varphi _\alpha \left( \begin{pmatrix} 1&{}x \\ &{}1 \end{pmatrix} \right) =\mathbf{{x}}_\alpha (x)\) and \(\varphi _\alpha ({\mathrm {diag}}(a,a^{-1}))=h_\alpha (a,a^{-1})\). For \(g,h\in {\mathrm {G}}_2(k)\), denote the conjugation \(g^{-1}hg\) by h.g. The conjugation of \(\varphi _\alpha (g)\) for \(g\in {\mathrm {SL}}_2(k)\) on \(\mathbf{{x}}_\beta (r_0)(0,r_2,r_3,r_4,0)\) is given in [14, p. 196, (3.5)]. From that description, one can check the following relations \(\mathbf{{x}}_\beta (1)(0,0,-1,2,0).\varphi _\alpha \begin{pmatrix} 1&{} 1/2\\ -1 &{}1/2 \end{pmatrix}=(0,0,1,1/2,0),\) \((0,0,1,1/2,0).\varphi _\alpha \begin{pmatrix} &{}1\\ -1 &{} \end{pmatrix}=\mathbf{{x}}_\beta (1/2)(0,1,0,0,0),\) and \(\mathbf{{x}}_\beta (1/2)(0,1,0,0,0).\varphi _\alpha \begin{pmatrix} 1&{} 0\\ -1/6 &{} 1 \end{pmatrix}=\mathbf{{x}}_{\alpha +\beta }(1)\). This shows that \(\mathbf{{x}}_\beta (1)(0,0,-1,2,0)\sim _{{\mathrm {G}}_2(k)} \mathbf{{x}}_{\alpha +\beta }(1)\).

  2. Recall that an irreducible character \(\theta \) of a reductive group H over a finite field is cuspidal if and only if for any proper parabolic subgroup \(Q=M_QU_Q\) with Levi \(M_Q\) and unipotent \(U_Q\), one has \(\sum _{u \in U_Q}\theta (uh)=0\) for all \(h\in H\), see [12, Corollary 9.1.2] for example. In fact, from the character Table 8, one can check that

    $$\begin{aligned} \langle {\theta _5,I(\chi )\otimes \omega _\psi } \rangle =\left\{ \begin{array}{lll} 1, &{} \text { if } \epsilon \chi \ne 1, \\ 2, &{} \text { if } \epsilon \chi =1. \end{array}\right. \end{aligned}$$

    Thus \(\theta _5\) indeed does not satisfy the conclusion of Theorem 2.1 if \(\chi =\epsilon ^{-1}=\epsilon \).

References

  1. Adrian, M., Liu, B.: Some results on simple supercuspidal representations of \({\rm GL}_n(F)\). J. Number Theory 160, 117–147 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adrian, M., Liu, B., Shaun, S., Xu, P.: On the Jacquet Conjecture on the local converse problem for p-adic \({\rm GL}_N\). Represent. Theory 20, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adrian, M., Liu, B., Shaun, S., Tam, K.-F.: On sharpness of the bound for the local converse theorem of \(p\)-adic \({\rm GL}_{prime}\), tame case. Proc. Am. Math. Soc. Ser. B 5, 6–17 (2018)

    Article  MATH  Google Scholar 

  4. Adrian. M., Takeda, S.: A local converse theorem for Archimedean \({\rm GL}(n)\). Preprint. (2018)

  5. Baruch, E. M.: Local factors attached to representations of \(p\)-adic groups and strong multiplicity one. PhD thesis, Yale University (1995)

  6. Baruch, E.M.: On the gamma factors attached to representations of \({{\rm U}}(2,1)\) over a p-adic field. Israel J. Math. 102, 317–345 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baruch, E.M., Rallis, S.: A uniqueness theorem of Fourier Jacobi models for representations of \({\rm Sp}(4)\). J. Lond. Math. Soc. 62, 183–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernstein, J., Zelevinski, A.V.: Representations of the group \({\rm GL}(n, F)\), where \(F\) is a non-archimedean local field. Rus. Math. Surv. 31, 1–68 (1976)

    Google Scholar 

  9. Bump, D.: Automorphic forms and Representations, Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  10. Bushnell, C., Henniart, G.: Langlands parameters for epipelagic representations of \({\rm GL}_n\). Math. Ann. 358(1–2), 433–463 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bushnell, C., Kutzko, P.: The Admissible Dual of \({{\rm GL}}_N\) via Restriction to Compact Open Subgroups. Annals of Mathematics Studies 129. Princeton University Press, Princeton (1993)

  12. Carter, R.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, vol. xii+554, p. John Wiley and Sons, Chichester, New York, Brisbane, Toronto and Singapore (1985)

  13. Chai, J.: Bessel functions and local converse conjecture of Jacquet. J. Eur. Math. Soc. (JEMS) 21(6), 1703–1728 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, B.: The conjugate classes of Chevalley groups of type \(({\rm G}_2)\). J. Algebra 9, 190–211 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang, B., Ree, R.: The characters of \(G_2(q)\), pp. 395–413. Instituto Nazionale di Alta Matematica, Symposia Mathematica XIII (1974)

  16. Chen, J.-P.: Local Factors, Central Characters, and Representations of the General Linear Group Over Non-archimedean Local Fields. Yale University, Thesis (1996)

  17. Chen, J.-P.: The \(n \times (n-2)\) local converse theorem for \({\rm GL}(n)\) over a \(p\)-adic field. J. Number Theory 120(2), 193–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cogdell, J., Kim, H., Piatetski-Shapiro, I., Shahidi, F.: On lifting from classical groups to \({ m GL}_N\). Publ. Math. Inst. Hautes Études Sci. No. 93, 5–30 (2001)

    Article  MATH  Google Scholar 

  19. Cogdell, J., Kim, H., Piatetski-Shapiro, I., Shahidi, F.: Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. No. 99, 163–233 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cogdell, J., Piatetski-Shapiro, I.: Converse theorems for \({{\rm GL}}_n\). Inst. Hautes. Études. Sci. Publ. Math. 79, 157–214 (1994)

    Article  MATH  Google Scholar 

  21. Cogdell, J., Piatetski-Shapiro, I.: Converse theorems for \({{ m GL}}_n\). II. J. Reine Angew. Math. 507, 165–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cogdell, J., Piatetski-Shapiro, I., Shahidi, F.: Functoriality for the quasisplit classical groups. On certain L-functions. In: Clay Math. Proc., 13, pp 117–140. Am. Math. Soc., Providence, (2011)

  23. Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math. 103, 103–161 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Enomoto, H.: The characters of the finite Chevalley group \(G_2(q), q=3^f\). Jpn. J. Math. 2, 191–248 (1976)

    Article  MATH  Google Scholar 

  25. Fulton, W., Harris, J.: Representation Theory, A First Course, Graduate Texts in Mathematics, 129. Springer (1991)

  26. Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Astérisque 346, 1–109 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Geck, M.: Character sheaves and generalized Gelfand–Graev characters. Proc. Lond. Math. Soc. (3) 78, 139–166 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Geck, M., Hézard, D.: On the unipotent support of character sheaves. Osaka J. Math. 45, 819–831 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Gérardin, P.: Weil representations associated to finite fields. J. Algebra 46, 54–101 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ginzburg, D.: On the standard \(L\)-function for \(G_2\). Duke Math. J. 69, 315–333 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gurevich, S., Howe, R.: Small representations of finite classical groups. In: Representation Theory, Number Theory, and Invariant Theory. Honor of Roger Howe on the occasion of his 70th Birthday, edited by Jim Cogdell, Ju-Lee Kim and Chen-bo Zhu, Progress in Math, 323, pp 209–234. Birkhäuser (2017)

  32. Hakim, J., Offen, O.: Distinguished representations of \({\rm GL}(n)\) and local converse theorems. Manuscripta Math. 148, 1–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Henniart, G.: Caractérisation de la correspondance de Langlands locale par les facteurs \(\epsilon \) de paires. Invent. Math. 113(2), 339–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Automorphic forms on \({\rm GL }(3)\). Ann. Math. (2) 109(1–2), 169–258 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Rankin–Selberg convolutions. Am. J. Math. 105, 367–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jacquet, H., Langlands, R.: Automorphic forms on \({\rm GL}(2)\). Lecture Notes in Mathematics, vol. 114. Springer, Berlin-New York (1970)

    Book  MATH  Google Scholar 

  37. Jacquet, H., Liu, B.: On the local converse theorem for \(p\)-adic \({ m GL}_n\). Am. J. Math. 140, 1399–1422 (2018)

    Article  MATH  Google Scholar 

  38. Jiang, D., Nien, C., Stevens, S.: Towards the Jacquet conjecture on the local converse problem for \(p\)-adic \({\rm GL}_n\). J. Eur. Math. Soc. 17(4), 991–1007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, D., Soudry, D.: The local converse theorem for \({\rm SO }(2n+1)\) and applications. Ann. Math. (2) 157(3), 743–806 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang, D., Soudry, D.: On local descent from GL(n) to classical groups. Am. J. Math. 134(3), 767–772 (2012). (appendix to a paper by D. Prasad and D. Ramakrishnan)

    Article  Google Scholar 

  41. Kawanaka, N.: Generalized Gelfand–Graev representations and Ennola duality. In: Algebraic Groups and Related Topics. Advanced Studies in Pure Math., Vol. 6, pp. 175–206. Kinokuniya and North-Holland, Tokyo and Amsterdam (1985)

  42. Kawanaka, N.: Generalized Gelfand Graev representations of exceptional algebraic groups over a finite field. Invent. Math. 84, 575–616 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kawanaka, N.: Shintani lifting and Gelfand-Graev representations. In: Proc. Sympos. Pure Math., Vol. 47, pp. 147-163. Amer. Math. Sot., Providence, (1987)

  44. Kudla, S.: Notes on the local theta correspondence, Lecture notes from the European School of. Group Theory (1996). http://www.math.toronto.edu/~skudla/ssk.research.html

  45. Lapid, E., Rallis, S.: On the local factors of representations of classical groups. Automorphic representations, L-functions and applications: progress and prospects, 309–359, Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin (2005)

  46. Liu, B., Moss, G.: On the local converse theorem and the descent theorem in families. Math. Z. 295(1–2), 463–483 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, B., Zhang, Q.: Uniqueness of certain Fourier–Jacobi models over finite fields. Finite Fields Appl. 58, 70–123 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu, B., Zhang, Q.: Gamma factors and converse theorems for classical groups over finite fields. J. Number Theory. https://doi.org/10.1016/j.jnt.2021.06.024

  49. Lusztig, G.: Characters of Reductive Groups over a Finite Field. Annals of Math Studies, Volume 107. Princeton University Press (1984)

  50. Lusztig, G.: A unipotent support for irreducible representations. Adv. Math. 94, 139–179 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Morimoto, K.: On the irreducibility of global descents for even unitary groups and its applications. Trans. Am. Math. Soc. 370, 6245–6295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Moss, G.: Gamma factors of pairs and a local converse theorem in families. Int. Math. Res. Not. IMRN 16, 4903–4936 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nien, C.: A proof of the finite field analogue of Jacquet’s conjecture. Am. J. Math. 136(3), 653–674 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nien, C.: Gamma factors and quadratic extension over finite fields. Manuscripta Math. 158(1–2), 31–54 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nien, C., Zhang, L.: Converse theorem of Gauss sums. (with an appendix by Zhiwei Yun). J. Number Theory 221, 365–388 (2021)

    Article  MathSciNet  Google Scholar 

  56. Rallis, S., Schiffmann, G.: Theta correspondence associated to \({\rm G}_2\). Am. J. Math. 111, 801–849 (1989)

    Article  MATH  Google Scholar 

  57. Paskunas, V., Stevens, S.: On the realization of maximal simple types and epsilon factors of pairs. Am. J. Math. 130(5), 1211–1261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Piatetski-Shapiro, I.I., Rallis, S., Schiffmann, G.: Rakin–Selberg integral for the group \({\rm G}_2\). Am. J. Math. 114, 1269–1315 (1992)

    Article  MATH  Google Scholar 

  59. Roditty, E.A.: On Gamma factors and Bessel functions for representations of general linear groups over finite fields. Master Thesis, Tel Aviv University. (2010)

  60. Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measures for \({\rm GL}(n)\). Am. J. Math. 106(1), 67–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  61. Steiberg, R.: Lectures on Chevalley groups. Yale University, (1967)

  62. Sun, B.: Multiplicity one theorems for Fourier–Jacobi models. Am. J. Math. 134, 1655–1678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Taylor, J.: On unipotent supports of reductive groups with a disconnected centre. J. Algebra 391, 41–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Xu, P.: A remark on the simple cuspidal representations of \({\rm GL}_n\). Preprint (2013). arXiv:1310.3519

  65. Zhang, Q.: A local converse theorem for \({{\rm U}}(1,1)\). Int. J. Number Theory 13, 1931–1981 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, Q.: A local converse theorem for \({{\rm U}}(2,2)\). Forum Math. 29, 1471–1497 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, Q.: A local converse theorem for \({\rm Sp}_{2r}\). Math. Ann. 372, 451–488 (2018)

    Article  MathSciNet  Google Scholar 

  68. Zhang, Q.: A local converse theorem for \({\rm U}_{2r+1}\). Trans. Am. Math. Soc. 371, 5631–5654 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank James Cogdell, Clifton Cunningham, Dihua Jiang and Freydoon Shahidi for their interest, constant support and encouragement. We thank Hikoe Enomoto, Meinolf Geck and Jay Taylor for helpful communications. This project was initiated when the second-named author was a student at the Ohio State University. The collaboration of the two authors started from the 2016 Paul J. Sally, Jr. Midwest Representation Theory Conference in University of Iowa. Part of the work was done when the second-named author worked at University of Calgary, Canada. We would like to express our gratitude to the above mentioned institutes. We also would like to thank the referees for their careful reading and many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first-named author is partially supported by NSF Grants DMS-1702218, DMS-1848058, and start-up funds from the Department of Mathematics at Purdue University. The second-named author is partially supported by NSFC Grant 11801577.

Appendices

Appendix A. Computation of certain Gauss sums

1.1 Basic Gauss sum

Let \(\psi \) be a nontrivial additive character of \(k={\mathbb {F}}_q\). Recall that we have fixed a square root \(\sqrt{\epsilon _0}\) of \(\epsilon _0\) such that

$$\begin{aligned} \sum _{x\in k}\psi (ax^2)=\epsilon (a)\sqrt{\epsilon _0 q}. \end{aligned}$$

For \(a\in k^\times \), let

$$\begin{aligned} A_r(a)=\sum _{x\in k^{\times ,2}}\psi (arx), r=1,\kappa . \end{aligned}$$

We then have

$$\begin{aligned} 1+2A_1(a)=\sum _{x\in k}\psi (ax^2)=\epsilon (a)\sqrt{\epsilon _0 q}, \end{aligned}$$

and

$$\begin{aligned} 1+2A_\kappa (a)=\sum _{x\in k}\psi (a\kappa x^2)=-\epsilon (a)\sqrt{\epsilon _0 q}. \end{aligned}$$

Thus we get the following

Lemma A.1

We have \(A_1(a)-A_\kappa (a)=\epsilon (a)\sqrt{\epsilon _0 q}\).

We write \(A_r(1)\) as \(A_r\) for simplicity, for \(r=1,\kappa \).

1.2 Computation of \(B_r^i\)

We now compute the sums \(B_r^i\) for \(r=1,\kappa \) and \(i=0,1,2,3\) in (3.6) used in Sect. 3. We assume \(q\equiv 1\ \mathrm {mod}\ 3\). Given \(r\in \left\{ {1,\kappa }\right\} , r_3\in k^\times , r_4\in k^\times /{\pm 1}\), let \(z(r,r_3,r_4)=-2-\frac{rr_4^2}{r_3^3}\in k\). Note that for any \(a\in k\), the equation \(t+t^{-1}=a\) for t is solvable over \(k_2\). Given \(r,r_3,r_4\) as above, and recall that \(t=t(r,r_3,r_4)\) denotes a solution of the equation \(t+t^{-1}=z(r,r_3,r_4)\). Note that \(rr_3r_4\ne 0\) implies that \(t\ne -1\). Although there are two choices of \(t(r,r_3,r_4)\) in general, one can check that the condition \(t(r,r_3,r_4)\in \left\{ {\pm 1}\right\} \) (resp. \(t(r,r_3,r_4)\in k^{\times ,3}-\left\{ {\pm 1}\right\} \), \(t(r,r_3,r_4)\in k^{\times }-k^{\times ,3}\), \(t(r,r_3,r_4)\in k_2- k^{\times }\)) is independent on the choice of \(t(r,r_3,r_4)\).

Lemma A.2

We have

$$\begin{aligned} B_1^0-B_\kappa ^0&=\epsilon _0\sqrt{\epsilon _0 q},\\ B_1^1-B_\kappa ^1&=-\frac{1}{2}(1+\epsilon _0)\sqrt{\epsilon _0 q},\\ B_1^2-B_\kappa ^2&=0,\\ B_1^3-B_\kappa ^3&=\frac{1}{2}(1-\epsilon _0)\sqrt{\epsilon _0 q}. \end{aligned}$$

Proof

Notice that the condition \(-2-rr_4^2/r_3^3=t+t^{-1}\) implies that \(t\ne -1\) and

$$\begin{aligned} (-r_3)^3=rt\left( \frac{r_4}{t+1} \right) ^2. \end{aligned}$$
(8.1)

We first compute \(B_r^0\). We first assume that \(r=1\). When \(t=1\), (8.1) becomes \((-r_3)^3=(r_4/2)^2\). Since \(k^{\times }\) is a cyclic group generated by \(\kappa \), the condition \((-r_3)^3=(r_4/2)^2\) implies that \(-r_3\in k^{\times ,2}\). Moreover, for each \(-r_3\in k^{\times ,2}\), there exists a unique \(r_4\in k^{\times }/\left\{ {\pm 1}\right\} \) such that the equation \((-r_3)^3=(r_4/2)^2\) holds. Thus we get

$$\begin{aligned} B_1^0=\sum _{-r_3\in k^{\times ,2}}\psi (r_3)=A_1(-1). \end{aligned}$$

Similarly, we have \(B_\kappa ^0=A_\kappa (-1)\). Thus we have \(B_1^0-B_\kappa ^1=A_1(-1)-A_\kappa (-1)=\epsilon _0\sqrt{\epsilon _0 q}\) by Lemma A.1.

We next compute \(B_{r}^1\), \(r=1,\kappa \). Let \(t=t(r,r_3,r_4)\in k^{\times ,3}-\left\{ {\pm 1}\right\} \). Let \(a\in k^\times \) with \(t=a^3\). We first assume that \(r=1\). From (8.1), we have \(-a^{-1}r_3\in k^{\times ,2}\). Thus the contribution of each fixed \(t=t(1,r_3,r_4)\) to the sum \(B_1^1\) is

$$\begin{aligned} \sum _{x\in k^{\times ,2}}\psi (-t^{1/3} x), \end{aligned}$$

where \(t^{1/3}\) is any cubic root of t in \(k^{\times }\). Because t and \(t^{-1}\) contributes the same to the sum \(B_1^1\), we have

$$\begin{aligned} B_1^1=\frac{1}{2}\sum _{t\in k^{\times ,3}-\left\{ {\pm 1}\right\} }\sum _{x\in k^{\times ,2}}\psi (-t^{1/3}x). \end{aligned}$$

Similarly, we have

$$\begin{aligned} B_\kappa ^1=\frac{1}{2}\sum _{t\in k^{\times ,3}-\left\{ {\pm 1}\right\} }\sum _{x\in k^{\times ,2}}\psi (-t^{1/3}\kappa x). \end{aligned}$$

Thus by Lemma A.1, we have

$$\begin{aligned} B_1^1-B_\kappa ^1&=\frac{1}{2}\sum _{t\in k^{\times ,3}-\left\{ {\pm 1}\right\} }(A_1(-t^{1/3})-A_\kappa (-t^{1/3}))\\&=\frac{1}{2}\epsilon _0\sqrt{\epsilon _0 q}\sum _{t\in k^{\times ,3}-\left\{ {\pm 1}\right\} }\epsilon (t^{1/3}). \end{aligned}$$

We have \(k^{\times ,3}=\left\{ {\kappa ^{3i}: 1\le i\le \frac{q-1}{3}}\right\} \). Thus we get

$$\begin{aligned} \sum _{t\in k^{\times ,3}}\epsilon (t^{1/3})=\sum _{i=1}^{\frac{q-1}{3}}\epsilon (\kappa )^i=0, \end{aligned}$$

where the last equality follows from the fact that \(\epsilon (\kappa )=-1\) and \(\frac{q-1}{3}\) must be even. Thus we get

$$\begin{aligned} B_1^1-B_\kappa ^1=-\frac{1}{2}\epsilon _0 \sqrt{\epsilon _0 q}(1+\epsilon _0)=-\frac{1}{2}(1+\epsilon _0)\sqrt{\epsilon _0 q}. \end{aligned}$$

We next consider \(B_r^2\). Note that \( k^\times -k^{\times ,3}=\kappa k^{\times ,3}\coprod \kappa ^2 k^{\times ,3}\). For \(j=1,2\), we define

$$\begin{aligned} B_r^{2,j}=\sum _{r_3\in k^\times ,r_4\in k^{\times }/\left\{ {\pm 1}\right\} , t(r,r_3,r_4)\in \kappa ^j k^{\times ,3}}\psi (r_3). \end{aligned}$$

We have \(B_{r}^2=B_r^{2,1}+B_{r}^{2,2}\). Take an element \(t\in k^\times -k^{\times ,3}\) with \(t(r,r_3,r_4)=t\). Then the condition \(-2-\frac{rr_4^2}{r_3^3}=t+t^{-1}\) implies (8.1). Note that if \(r=1\) and \(t\in \kappa k^{\times ,3}\), equation (8.1) implies that \(-r_3\in \kappa k^{\times ,2}\), and for such an \(r_3\), there is a unique \(r_4\) satisfying that equation. Thus we get

$$\begin{aligned} B_{1}^{2,1}=\sum _{t\in \kappa k^{\times ,3}}\sum _{x\in k^{\times ,2}}\psi (-\kappa x)=\frac{q-1}{3}A_\kappa (-1). \end{aligned}$$

For \(t\in \kappa ^2 k^{\times ,2}\) and \(r=\kappa \), we also have that \(-r_3\in \kappa k^{\times ,2}\) and a unique \(r_4\) determined by these datum. This shows that

$$\begin{aligned} B_1^{2,1}=\sum _{t\in \kappa k^{\times ,3}}\sum _{x\in k^{\times ,2}}\psi (-\kappa x)=\frac{q-1}{3}A_\kappa (-1)=B_{\kappa }^{2,2}. \end{aligned}$$

Similarly, we have \(B_\kappa ^{2,1}=B_1^{2,2}\). Thus we get \(B_1^2=B_{\kappa }^2\).

Finally, we consider \(B_r^3\). We have

$$\begin{aligned} B_{r}^0+B_r^1+B_r^2+B_r^3=\sum _{r_3\in k^\times , r_4\in k^{\times }/\left\{ {\pm 1}\right\} }\psi (r_3)=-\frac{q-1}{2}. \end{aligned}$$

Thus, from the previous results, we get

$$\begin{aligned} B_1^3-B_\kappa ^3=-(B_1^0-B_\kappa ^0)-(B_1^1-B_\kappa ^1). \end{aligned}$$

This concludes the proof of the lemma. \(\square \)

1.3 Computation of \(C_r^i\)

In this subsection, we compute the sums \(C_r^i\) for \(r=1,\kappa ,\) and \(i=0,1,2,3\) defined in (3.8). Note that in this case, \(q\equiv -1\ \mathrm {mod}\ 3\). Recall that \(k_2\) is the unique quadratic extension of \(k={\mathbb {F}}_q\). We can realize \(k_2\) as \(k[\sqrt{\kappa }]\). Let \({\mathrm {Nm}}:k_2\rightarrow k\) be the norm map. We have \({\mathrm {Nm}}(x+y\sqrt{\kappa })=x^2-y^2\kappa \). Recall that \(k_2^1\) is the norm 1 subgroup of \(k_2^\times \).

Lemma A.3

  1. 1.

    If an element \(u\in k_2^1\) has a cubic root \(v\in k_2^\times \), then we must have \(v\in k_2^1\).

  2. 2.

    Let \(t\in k_2^1\) and \(t\ne -1\). Then \(t+t^{-1}+2\) is a square in \(k^\times \) if and only if t is a square in \(k_2^1\).

Proof

  1. (1)

    Since \(u=v^3\in k_2^{1}\), we have \(v^{3q+3}=1\). On the other hand, we have \(v^{q^2-1}=1\) since \(v\in k_2^\times \). Since \(q\equiv -1 \ \mathrm {mod}\ 3\), the greatest common divisor of \(q^2-1\) and \(3q+3\) is \(q+1\). Thus \(v^{q+1}=1\), which means that \(v\in k_2^1\).

  2. (2)

    Suppose that \(t=\beta ^2\) with \(\beta \in k_2^1\). We write \(\beta =a+b\sqrt{\kappa }\) with \(a,b\in k\). Then \(\beta \in k_2^1\) means that \(a^2-b^2\kappa =1\), which implies that \(b^2\kappa =a^2-1\). We have \(t=\beta ^2=a^2+b^2\kappa +2ab\sqrt{\kappa }\). Thus

    $$\begin{aligned} t+t^{-1}+2=2(a^2+b^2\kappa )+2=4a^2\in k^{\times ,2}. \end{aligned}$$

    Conversely, suppose that \(t+t^{-1}+2\in k^{\times ,2}\). Suppose that \(t=x+y\sqrt{\kappa }\) with \(x,y\in k\) and \(t+t^{-1}+2=a^2\) with \(a\in k^{\times }\). Note that \(t+t^{-1}+2=2x+2\). Thus \(a^2=2x+2\). On the other hand, we have

    $$\begin{aligned} a^2=t+t^{-1}+2=t^{-1}(t+1)^2. \end{aligned}$$

    Thus, we have \(t=(a^{-1}(t+1))^2\). It suffices to show that \(a^{-1}(t+1)\in k_2^1\). We have

    $$\begin{aligned} {\mathrm {Nm}}(t+1)=(x+1)^2-y^2\kappa =2+2x=a^2, \end{aligned}$$

    where we used \(x^2-y^2\kappa =1\). Thus \({\mathrm {Nm}}(a^{-1}(t+1))=1\).

\(\square \)

Lemma A.4

We have

$$\begin{aligned} C_1^0-C_\kappa ^0&=\epsilon _0\sqrt{\epsilon _0 q},\\ C_1^1-C_\kappa ^1&=-\frac{1}{2}(1+\epsilon _0)\sqrt{\epsilon _0 q},\\ C_1^2-C_\kappa ^2&=\frac{1}{2}(1-\epsilon _0)\sqrt{\epsilon _0 q},\\ C_1^3-C_\kappa ^3&=0. \end{aligned}$$

Proof

Note that \(C_r^0=B_r^0\) and thus \(C_1^0-C_2^0=\epsilon _0\sqrt{\epsilon _0 q}\) follows from Lemma A.2. To compute \(C_r^2\), we take an element \(t\in k^\times -\left\{ {\pm 1}\right\} \) and let \(t(r,r_3,r_4)=t\), which implies

$$\begin{aligned} (-r_3)^3=rt\left( \frac{r_4}{t+1}\right) ^2, \end{aligned}$$

see (8.1). Note that any \(t\in k^{\times }\) is has a cubic root in \(k^{\times }\). Let \(t^{1/3}\in k^\times \) be one cubic root of t. Then the above equation implies that

$$\begin{aligned} (-r_3/t^{1/3})^3=r\left( \frac{r_4}{t+1}\right) ^2. \end{aligned}$$

If \(r=1\), this implies that \(r_3\in -t^{1/3}k^{\times ,2}\), and for such an \(r_3\) (and a fixed t), there is a unique \(r_4\in k^\times /\left\{ {\pm 1}\right\} \) such that \((-r_3/t^{1/3})^3=r\left( \frac{r_4}{t+1}\right) ^2 \). Thus the contribution of a single t with \(t(1,r_3,r_4)\) to the sum \(C_1^1\) is

$$\begin{aligned} \sum _{k^{\times ,2}}\psi (-t^{1/3}x). \end{aligned}$$

Since t and \(t^{-1}\) have the same contribution, we have

$$\begin{aligned} C_1^1=\frac{1}{2}\sum _{t\in k^{\times }-\left\{ {\pm 1}\right\} }\sum _{x\in k^{\times ,2}}\psi (-t^{1/3}x). \end{aligned}$$

Since \(t\mapsto t^{3}\) is a bijection from \(k^\times -\left\{ {\pm 1}\right\} \) to itself, we get

$$\begin{aligned} C_1^1=\frac{1}{2}\sum _{t\in k^{\times }-\left\{ {\pm 1}\right\} }\sum _{x\in k^{\times ,2}}\psi (-tx)=\frac{1}{2}\sum _{t\in k^\times -\left\{ {\pm 1}\right\} }A_1(-t). \end{aligned}$$

Similarly, we have

$$\begin{aligned} C_\kappa ^1=\frac{1}{2}\sum _{t\in k^\times -\left\{ {\pm 1}\right\} }A_\kappa (-t). \end{aligned}$$

Thus by Lemma A.1, we have

$$\begin{aligned} C_1^1-C_\kappa ^1&=\frac{1}{2}\sum _{t\in k^\times -\left\{ {\pm 1}\right\} }(A_1(-t)-A_\kappa (-t))\\&=\frac{1}{2}\sum _{t\in k^\times -\left\{ {\pm 1}\right\} } \epsilon _0 \epsilon (t)\sqrt{\epsilon _0 q}. \end{aligned}$$

Since \(\epsilon \) is a nontrivial character on \(k^\times \), we have \(\sum _{t\in k^\times }\epsilon (t)=0\). Thus we have

$$\begin{aligned} C_1^1-C_\kappa ^1=-\frac{1}{2}(1+\epsilon _0)\sqrt{\epsilon _0 q}. \end{aligned}$$

We next consider \(C_r^3\). Let \(\alpha \) be a generator of \(k_2^1\). Note that \(\alpha \) has no cubic root in \(k_2^1\). By Lemma A.3 (1), we have

$$\begin{aligned} k_2^1-k_2^{\times ,3}=\left\{ {\alpha ^i:0\le i\le q, 3\not \mid i}\right\} . \end{aligned}$$

Consider the subsets \(S_1,S_2\) of \(k_2^1-k_2^{\times ,3}:\)

$$\begin{aligned} S_1=\left\{ {\alpha ^i:0\le i\le q, 3\not \mid i,2\not \mid i}\right\} ,S_2=\left\{ {\alpha ^i:0\le i\le q, 3\not \mid i, 2|i}\right\} . \end{aligned}$$

Note that \(|S_1|=|S_2|=\frac{q+1}{3}\). For \(i=1,2\), let

$$\begin{aligned} C_r^{3,i}=\sum _{r_3\in k^{\times },r_4\in k^{\times }/\left\{ {\pm 1}\right\} ,t(r,r_3,r_4)\in S_i}\psi (r_3). \end{aligned}$$

We have \(C_r^{3}=C_{r}^{3,1}+C_{r}^{3,2}\). Take \(t\in S_i\), the condition \(t(r,r_3,r_4)=t\) implies that

$$\begin{aligned} (-r_3)^3=\frac{rr_4^2}{t+t^{-1}+2}. \end{aligned}$$

If \(t\in S_1\), by Lemma A.3, we have \(t+t^{-1}+2\in \kappa k^{\times ,2}\). Thus for \(r=1,t\in S_1\), we have \(-r_3\in \kappa k^{\times ,2}\), and for each \(-r_3\in \kappa k^{\times ,2}\), there is a unique \(r_4\in k^{\times }/\left\{ {\pm 1}\right\} \) such that \(t(1,r_3,r_4)=t\) (for fixed t). Thus, we get

$$\begin{aligned} C_1^{3,1}=\frac{1}{2}\sum _{t\in S_1}\sum _{x\in k^{\times ,2}}\psi (-\kappa x)=\frac{q+1}{6}A_{\kappa }(-1), \end{aligned}$$

where the 1/2 was appeared since t and \(t^{-1}\) have the same contribution to the above sum. Similarly, we have

$$\begin{aligned} C_\kappa ^{3,2}=\frac{1}{2}\sum _{t\in S_2}\sum _{x\in k^{\times ,2}}\psi (-\kappa x)=\frac{q+1}{6}A_{\kappa }(-1). \end{aligned}$$

In particular, we have \(C_{1}^{3,1}=C_{\kappa }^{3,2}\). Similarly, we have \(C_1^{3,2}=C_\kappa ^{3,1}\). Thus we have \(C_1^3-C_\kappa ^3=0\).

Finally, to compute \(C_1^2-C_{\kappa }^2\), it suffices to notice that

$$\begin{aligned} \sum _{i=0}^3 C_1^i=\sum _{i=0}^3C_\kappa ^i, \end{aligned}$$

and thus

$$\begin{aligned} C_1^2-C_\kappa ^2=-(C_1^0-C_\kappa ^0)-(C_1^1-C_\kappa ^1)-(C_1^3-C_\kappa ^3). \end{aligned}$$

One can also compute \(C_1^2-C_\kappa ^2\) directly from Lemma A.3. \(\square \)

1.4 Computation of \(D_r^i\)

In this subsection, let \(q=3^f\) and \(k={\mathbb {F}}_q\). We compute the Gauss sums in (4.2).

Lemma A.5

We have

$$\begin{aligned} D_1^0-D_\kappa ^0&= \epsilon _0 \sqrt{\epsilon _0 q},\\ D_1^1-D_\kappa ^1&=-\frac{1}{2}(1+\epsilon _0)\sqrt{\epsilon _0 q},\\ D_1^2-D_\kappa ^2&=\frac{1}{2}(1-\epsilon _0)\sqrt{\epsilon _0 q}. \end{aligned}$$

Proof

Note that we have \(D_r^0=B_r^0\). Thus the first identity follows from Lemma A.2. The second identity can be computed similarly as the computation of \(C_1^1-C_\kappa ^1\). Since \(D_1^0+D_1^1+D_1^2=D_\kappa ^0+D_\kappa ^1+D_\kappa ^2\), the last identity follows from the first one. \(\square \)

Appendix B. Embedding of \({\mathrm {G}}_2\) into \({\mathrm {SO}}_7\)

In this appendix, based on [56], we give an explicit matrix realization of \(\mathbf{{x}}_\gamma (r)\) for each root \(\gamma \) of \({\mathrm {G}}_2\), which gives an explicit embedding of \({\mathrm {G}}_2(k)\) into \({\mathrm {SO}}_7(k)\). Here \({\mathrm {SO}}_7(k)=\left\{ {g\in {\mathrm {GL}}_7(k): {}^t g Qg=Q}\right\} \), with \(Q=\begin{pmatrix} &{}&{}s_3 \\ &{}2&{} \\ {}^t \!s_3 \end{pmatrix},\) where \(s_3=\begin{pmatrix} &{}&{}1 \\ &{}1&{} \\ -1&{}&{}\end{pmatrix}.\) The explicit realization of \(\mathbf{{x}}_\gamma (r)\) is given as follows.

$$\begin{aligned} \begin{array}{r@{\quad }l@{\quad }c@{\quad }r@{\quad }l} \mathbf{{x}}_\alpha (r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}1&{}0&{}-2r&{}0&{}-r^2&{}0\\ 0&{}0&{}1&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}1&{}0&{}r&{}0\\ -r&{}0&{}0&{}0&{}1&{}0&{}0\\ 0 &{}0&{}0&{}0&{}0&{}1&{}0\\ 0&{}0&{}-r&{}0&{}0&{}0&{}1\end{pmatrix}, \qquad \mathbf{{x}}_{-\alpha }(r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}0&{}-r&{}0&{}0\\ 0&{}1&{}0&{}0&{}0&{}0&{}0 \\ 0&{}0&{}1&{}0&{}0&{}0&{}-r \\ 0 &{}-r&{}0&{}1&{}0&{}0&{}0 \\ 0&{}0&{}0&{}0&{}1&{}0&{}0 \\ 0&{}-r^2&{}0&{}2r&{}0&{}1&{}0 \\ 0&{}0&{}0&{}0&{}0&{}0&{}1\end{pmatrix},\\ \mathbf{{x}}_{\alpha +\beta }(r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}-2r&{}0&{}0&{}-r^2\\ 0&{}1&{}0&{}0&{}0&{}0&{}0 \\ 0&{}0&{}1&{}0&{}0&{}0&{}0 \\ 0&{}0&{}0&{}1&{}0&{}0&{}r \\ 0&{}r&{}0&{}0&{}1&{}0&{}0 \\ 0&{}0&{}r&{}0&{}0&{}1&{}0 \\ 0&{}0&{}0&{}0&{}0&{}0&{}1 \end{pmatrix}, \qquad \mathbf{{x}}_{-(\alpha +\beta )}(r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}1&{}0&{}0&{}r&{}0&{}0 \\ 0&{}0&{}1&{}0&{}0&{}r&{}0 \\ -r&{}0&{}0&{}1&{}0&{}0&{}0 \\ 0&{}0&{}0&{}0&{}1&{}0&{}0 \\ 0&{}0&{}0&{}0&{}0&{}1&{}0 \\ -r^2&{}0&{}0&{}2r&{}0&{}0&{}1 \end{pmatrix},\\ \mathbf{{x}}_{2\alpha +\beta }(r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}0&{}0&{}-r&{}0\\ 0&{}1&{}0&{}0&{}0&{}0&{}r \\ 0&{}0&{}1&{}0&{}0&{}0&{}0 \\ 0&{}0&{}-r&{}1&{}0&{}0&{}0 \\ 0&{}0&{}r^2&{}-2r&{}1&{}0&{}0 \\ 0&{}0&{}0&{}0&{}0&{}1&{}0 \\ 0&{}0&{}0&{}0&{}0&{}0&{}1 \end{pmatrix}, \qquad \mathbf{{x}}_{-(2\alpha +\beta )}(r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}1&{}0&{}0&{}0&{}0&{}0 \\ 0&{}0&{}1&{}-2r&{}r^2&{}0&{}0 \\ 0&{}0&{}0&{}1&{}-r&{}0&{}0 \\ 0&{}0&{}0&{}0&{}1&{}0&{}0 \\ -r&{}0&{}0&{}0&{}0&{}1&{}0 \\ 0&{}r&{}0&{}0&{}0&{}0&{}1 \end{pmatrix}, \\ \mathbf{{x}}_\beta (r)&{}=&{}\begin{pmatrix} 1&{}r&{}0&{}0&{}0&{}0&{}0\\ 0&{}1&{}0&{}0&{}0&{}0&{}0 \\ 0&{}0&{}1&{}0&{}0&{}0&{}0 \\ 0&{}0&{}0&{}1&{}0&{}0&{}0 \\ 0&{}0&{}0&{}0&{}1&{}0&{}0 \\ 0&{}0&{}0&{}0&{}0&{}1&{}-r \\ 0&{}0&{}0&{}0&{}0&{}0&{}1 \end{pmatrix}, \qquad \mathbf{{x}}_{3\alpha +\beta }(r)&{}=&{}\begin{pmatrix} 1&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}1&{}r&{}0&{}0&{}0&{}0 \\ 0&{}0&{}1&{}0&{}0&{}0&{}0 \\ 0&{}0&{}0&{}1&{}0&{}0&{}0 \\ 0&{}0&{}0&{}0&{}1&{}r&{}0 \\ 0&{}0&{}0&{}0&{}0&{}1&{}0 \\ 0&{}0&{}0&{}0&{}0&{}0&{}1 \end{pmatrix}, \end{array}\\ \mathbf{{x}}_{3\alpha +2\beta }(r)=\begin{pmatrix} 1&{}0&{}r&{}0&{}0&{}0&{}0\\ 0&{}1&{}0&{}0&{}0&{}0&{}0 \\ 0&{}0&{}1&{}0&{}0&{}0&{}0 \\ 0&{}0&{}0&{}1&{}0&{}0&{}0 \\ 0&{}0&{}0&{}0&{}1&{}0&{}r \\ 0&{}0&{}0&{}0&{}0&{}1&{}0 \\ 0&{}0&{}0&{}0&{}0&{}0&{}1 \end{pmatrix}, \qquad \end{aligned}$$

and

$$\begin{aligned} \mathbf{{x}}_{-\beta }(r)={}^t \mathbf{{x}}_\beta (r), \mathbf{{x}}_{-(3\alpha +\beta )}(r)={}^t \mathbf{{x}}_{3\alpha +\beta }(r), \mathbf{{x}}_{-(3\alpha +2\beta )}(r)={}^t\mathbf{{x}}_{3\alpha +\beta }(r). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhang, Q. On a converse theorem for \({\mathrm {G}}_2\) over finite fields. Math. Ann. 383, 1217–1283 (2022). https://doi.org/10.1007/s00208-021-02250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02250-2

Mathematics Subject Classification

Navigation