Skip to main content
Log in

Remark on the strong solvability of the Navier–Stokes equations in the weak \(L^n\) space

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The initial value problem of the incompressible Navier–Stokes equations in \(L^{n,\infty }({\mathbb {R}}^n)\) is investigated. Introducing the real interpolation estimates for the Duhamel terms, we construct global and local in time mild (and strong) solutions in \(BC\bigl ((0,T)\,;\,L^{n,\infty }({\mathbb {R}}^n)\bigr )\) for external forces with non-divergence form in the scale invariant class. We observe that a mild solution becomes the strong solution, i.e., it satisfies the differential equation in the critical topology of \(L^{n,\infty }({\mathbb {R}}^n)\) with an additional condition only on the external force, even though the Stokes semigroup in not strongly continuous on \(L^{n,\infty }({\mathbb {R}}^n)\). Furthermore, via the existence and the uniqueness of local in time solutions, we extend the uniqueness theorem within the solution class \(BC\bigl ([0,T)\,;\,L^{n,\infty }({\mathbb {R}}^n)\bigr )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barraza, O.A.: Self-similar solutions in weak \(L^p\)-spaces of the Navier–Stokes equations. Rev. Mat. Iberoamericana 12, 411–439 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bergh, J., Löfström, J.: An introduction, Grundlehren der Mathematischen Wissenschaften. In: Interpolation Spaces, vol. 223. Springer, Berlin (1976)

    Chapter  Google Scholar 

  3. Borchers, W., Miyakawa, T.: On stability of exterior stationary Navier–Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  Google Scholar 

  4. Brezis, H.: Remarks on the preceding paper by M. Ben-Artzi “Global solutions of two-dimensional Navier–Stokes and Euler equations”. Arch. Ration. Mech. Anal. 128, 359–360 (1994)

  5. Farwig, R., Nakatsuka, T., Taniuchi, Y.: Existence of solutions on the whole time axis to the Navier–Stokes equations with precompact range in \(L^3\). Arch. Math. (Basel) 104, 539–550 (2015)

    Article  MathSciNet  Google Scholar 

  6. Farwig, R., Nakatsuka, T., Taniuchi, Y.: Uniqueness of solutions on the whole time axis to the Navier–Stokes equations in unbounded domains. Commun. Partial Differ. Equ. 40, 1884–1904 (2015)

    Article  MathSciNet  Google Scholar 

  7. Farwig, R., Taniuchi, Y.: Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier–Stokes equations in unbounded domains. Discrete Contin. Dyn. Syst. Ser. S 6, 1215–1224 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  9. Geissert, M., Hieber, M., Nguyen, T.H.: A general approach to time periodic incompressible viscous fluid flow problems. Arch. Ration. Mech. Anal. 220, 1095–1118 (2016)

    Article  MathSciNet  Google Scholar 

  10. Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

    Article  Google Scholar 

  11. Grafakos, L.: Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

    Google Scholar 

  12. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation in \({ R}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  13. Koba, H.: On \(L^{3,\infty }\)-stability of the Navier–Stokes system in exterior domains. J. Differ. Equ. 262, 2618–2683 (2017)

    Article  Google Scholar 

  14. Kozono, H., Ogawa, T.: Some \(L^p\) estimate for the exterior Stokes flow and an application to the nonstationary Navier–Stokes equations. Indiana Univ. Math. J. 41, 789–808 (1992)

    Article  MathSciNet  Google Scholar 

  15. Kozono, H., Yamazaki, M.: Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space \(L^{n,\infty }\). Houst. J. Math. 21, 755–799 (1995)

    MATH  Google Scholar 

  16. Kozono, H., Yamazaki, M.: On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228, 751–785 (1998)

    Article  MathSciNet  Google Scholar 

  17. Lions, P.-L., Masmoudi, N.: Uniqueness of mild solutions of the Navier–Stokes system in \(L^N\). Commun. Partial Differ. Equ. 26, 2211–2226 (2001)

    Article  Google Scholar 

  18. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, pp. 1–424. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  19. Maremonti, P.: Regular solutions to the Navier-Stokes equations with an initial data in \(L(3,\infty )\). Ric. Mat. 66, 65–97 (2017)

    Article  MathSciNet  Google Scholar 

  20. Meyer, Y.: Wavelets, paraproducts, and Navier–Stokes equations. In: Current Developments in Mathematics. 1996 (Cambridge, MA), pp. 105–212. Int. Press, Boston (1997)

    Google Scholar 

  21. Miyakawa, T., Yamada, M.: Planar Navier–Stokes flows in a bounded domain with measures as initial vorticities. Hiroshima Math. J. 22, 401–420 (1992)

    Article  MathSciNet  Google Scholar 

  22. Okabe, T., Tsutsui, Y.: Time periodic strong solutions to the incompressible Navier–Stokes equations with external forces of non-divergence form. J. Differ. Equ. 263, 8229–8263 (2017)

    Article  MathSciNet  Google Scholar 

  23. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)-spaces for bounded and exterior domains. In: Mathematical Problems Relating to the Navier–Stokes Equation, Ser. Adv. Math. Appl. Sci., vol. 11, pp. 1–35. World Sci. Publ., River Edge (1992)

    Google Scholar 

  24. Tsutsui, Y.: The Navier–Stokes equations and weak Herz spaces. Adv. Differ. Equ. 16, 1049–1085 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Yamazaki, M.: The Navier–Stokes equations in the weak-\(L^n\) space with time-dependent external force. Math. Ann. 317, 635–675 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Yasushi Taniuchi for fruitful comments. They also would like to appreciate Professor Naoto Kajiwara for his comment. The authors also thank the referees for their various and fruitful comments. The work of the first author is partly supported by JSPS Grand-in-Aid for Young Scientists (B) 17K14215. The work of the second author is partly supported by JSPS through Grant-in-Aid for Scientific Research (B) 20H01815 and (C) 19K03538, and Fostering Joint International Research (B) 18KK0072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Okabe.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Inclusion between \(X_\sigma ^{n,\infty }\) and \({\widetilde{L}}_{\sigma }^{n,\infty }({\mathbb {R}}^n)\)

Inclusion between \(X_\sigma ^{n,\infty }\) and \({\widetilde{L}}_{\sigma }^{n,\infty }({\mathbb {R}}^n)\)

We show, in general, that \(X_{\sigma }^{n,\infty } \ne {\widetilde{L}}_{\sigma }^{n,\infty }({\mathbb {R}}^n)\).

For simplicity, we consider \(n=1\) and forget the solenoidal condition for a while. Actually, we give an example that \(a\not \in \overline{D(\Delta )}^{\Vert \cdot \Vert _{1,\infty }}\) and \(a \in {\widetilde{L}}^{1,\infty }({\mathbb {R}})\). Here, we note that \(L^{1,\infty }({\mathbb {R}})\) is a quasi Banach space but the following contains an essential idea.

Let

$$\begin{aligned} R(x)= {\left\{ \begin{array}{ll} |x|, &{} 0\le |x| \le 1, \\ r_k(x), &{} k < |x| \le k+1, k=1,2,\dots , \end{array}\right. } \end{aligned}$$

where \(r_k(x) = \mathrm {sgn} (\sin (2^k\pi x))\) denote the Rademacher functions.

Suppose the following function:

$$\begin{aligned} a(x) := \frac{R(x)}{|x|} \quad \text {for }x \in {\mathbb {R}}. \end{aligned}$$

We note that \(|R(x)|\le 1\) and \(|a(x)|={\left\{ \begin{array}{ll}1, &{} |x|\le 1, \\ 1/|x|, &{} |x|\ge 1. \end{array}\right. }\)

Then, we shall show that \(|e^{t\Delta }a(x)|=o(1/|x|)\) as \(|x|\rightarrow \infty .\) Take an arbitrary small \(\varepsilon >0\). Then we can choose \(N_{\varepsilon } \in {\mathbb {N}}\) so that

$$\begin{aligned} \int _{|y| \ge N_\varepsilon } E_1(y)dy<\varepsilon \quad \text {and }\quad \int _{|y| \ge N_\varepsilon } 2|y| E_1(y)dy <\varepsilon , \end{aligned}$$

where \(E_t(x)=(4\pi t)^{-1/2}\exp (-|x|^2/(4t))\), \(t>0\) is the heat kernel.

For a while, we assume \(|x| \ge 2N_\varepsilon \) and \(t\le 1\). Put

$$\begin{aligned} \begin{aligned} e^{t\Delta }a(x)&=\int _{|y|<|x|/2} E_t(y)a(x-y)dy+ \int _{|y|\ge |x|/2} E_t (y) a(x-y)dy \\&=:I_1+ I_2. \end{aligned} \end{aligned}$$

Firstly, we estimate \(I_2\) as follows:

$$\begin{aligned} \begin{aligned} |I_2|&\le \int _{|y|\ge |x|/2} E_t(y)dy = \int _{|y|\ge |x|/2} E_t(y) \frac{|x|}{|x|}dy \\&\le \frac{1}{|x|}\int _{|y|\ge N_\varepsilon } 2|y|E_t(y)dy \le \frac{1}{|x|}\sqrt{t}\int _{|y|\ge N_\varepsilon } 2|y|E_1(y)dy \\&\le \frac{1}{|x|}\sqrt{t}\varepsilon \le \frac{\varepsilon }{|x|}. \end{aligned} \end{aligned}$$

Next, we estimate \(I_1\):

$$\begin{aligned} \begin{aligned} I_1&= \int _{|y|\le |x|/2} E_t(y)R(x-y)\bigg \{\frac{1}{|x-y|}-\frac{1}{|x|}\bigg \}dy + \int _{|y|\le |x|/2} E_t(y)\frac{R(x-y)}{|x|}dy\\&=: J_1 + J_2. \end{aligned} \end{aligned}$$

Since \(|x-y| \ge |x|/2\) when \(|y|\le |x|/2\), we have

$$\begin{aligned} |J_1|\le & {} \int _{|y|\le |x|/2} E_t(y)|R(x-y)| \frac{|y|}{|x||x-y|}dy \le \frac{1}{|x|^2}\int _{|y|\le |x|/2} 2|y|E_t(y)dy\\\le & {} \frac{1}{|x|}\frac{\sqrt{t}M}{|x|}. \end{aligned}$$

Here, we put \(M=\int _{{\mathbb {R}}} 2|y|E_1(y)dy\). Therefore, if \(|x|>M/\varepsilon \), then \(|J_1| \le \varepsilon /|x|\).

In order to estimate \(J_2\), it suffices to show that there exists \(L_{\varepsilon ,t}>0\) such that if \(|x| > L_{\varepsilon ,t}\) then

$$\begin{aligned} \left| \int _{|y| \le N_\varepsilon } E_t(y) R(x-y)dy\right| <\varepsilon . \end{aligned}$$
(A.1)

Since \(E_t\) is uniformly continuous on \([-N_\varepsilon ,N_\varepsilon ]\), we can choose \(k_0\in {\mathbb {N}}\) such that the lower Darboux sum with partition of \([-N_\varepsilon ,N_\varepsilon ]\) by partial length \(2^{-k_0}\) approximates the integral \(\int _{|y|\le N_{\varepsilon }}E_t(y)\,dy\). Indeed, let \(x_\ell =-N_\varepsilon +\ell 2^{-k_0}\) \((0\le \ell \le 2N_\varepsilon 2^{k_0})\) and set

$$\begin{aligned} S_t(x)=\sum _{\ell =0}^{2N_\varepsilon 2^{k_0}-1} a_{\ell ,t} \chi _{[x_\ell ,x_{\ell +1}]}(x), \qquad \text { where }\quad a_{\ell ,t}=\inf _{[x_\ell ,x_{\ell +1}]} E_t(x), \end{aligned}$$

then we suppose that

$$\begin{aligned} \int _{|y|\le N_\varepsilon } (E_t(y) - S_t(y))\,dy \le \frac{\varepsilon }{2}. \end{aligned}$$

Moreover, we note that

$$\begin{aligned} \sum _{\ell =0}^{2N_\varepsilon 2^{k_0}-1} a_{\ell ,t} 2^{-k_0} \le 1. \end{aligned}$$

Take \(K\in {\mathbb {N}}\) so that \(2^{-K+k_0} < \varepsilon /2\). Hereafter, we assume \(|x| > K +N_\varepsilon +1\) and \(|y| \le N_\varepsilon \). Then \(|x-y|\ge K+1\). So under \(|x-y|>K+1\), we note that \(R(x-y)=r_k(x-y)\) and \(k\ge K+1\).

So we note that if \([x_\ell ,x_{\ell +1}]\) is contained within the region so that \(R(x-\cdot )=r_k(x-\cdot )\), i.e., the case for all \(y \in [x_l,x_{l+1}]\) it holds that \(k<|x-y|\le k+1\), then \(\int _{[x_\ell ,x_{\ell +1}]}a_{\ell ,t}r_k(x-y)dy =0\). Otherwise, \(\bigl | \int _{[x_\ell ,x_{\ell +1}]} a_{\ell ,t}R(x-y)dy\bigr |\le 2\cdot 2^{-K-1} a_{\ell ,t}\). Hence,

$$\begin{aligned} \begin{aligned} \left| \int _{|y|\le N_\varepsilon } S_t(y)R(x-y)dy\right|&\le \sum _{\ell =0}^{2N_\varepsilon 2^{k_0}-1} \left| \int _{[x_\ell ,x_{\ell +1}]} a_{\ell ,t} R(x-y)dy\right| \\&\le \sum _{\ell =0}^{2N_\varepsilon 2^{k_0}-1} 2^{-K}a_{\ell ,t} \\&= 2^{-K+k_0} \sum _{\ell =0}^{2N_\varepsilon 2^{k_0}-1} a_{\ell ,t}2^{-k_0} \le \frac{\varepsilon }{2}. \end{aligned} \end{aligned}$$

Therefore, taking \(L_{\varepsilon ,t}=K+N_\varepsilon +1\), we obtain (A.1).

We estimate \(J_2\) for \(|x|>L_{\varepsilon ,t}\). It holds that

$$\begin{aligned} \begin{aligned} |J_2|&\le \left| \int _{|y|\le N_\varepsilon } E_t(y)R(x-y)dy\right| + \left| \int _{N_\varepsilon \le |y| \le |x|/2} E_t(y)R(x-y)dy \right| \\&\le \varepsilon + \int _{|y|\ge N_\varepsilon } E_t(y)dy \le 2\varepsilon . \end{aligned} \end{aligned}$$

As a consequence, for \(|x| \ge L:=\max \{2N_\varepsilon , M/\varepsilon ,L_{\varepsilon ,t}\}\) we obtain that

$$\begin{aligned} |e^{t\Delta }a(x)|\le \frac{4\varepsilon }{|x|}. \end{aligned}$$

Next, we show that \(e^{t\Delta }a \not \rightarrow a\) as \(t\rightarrow 0\) in \(L^{1,\infty }({\mathbb {R}})\). Let \(t\le 1\) be fixed. Since \(\Vert f+g\Vert _{1,\infty } \le 2 (\Vert f\Vert _{1,\infty }+\Vert g\Vert _{1,\infty })\) we observe that

$$\begin{aligned} \begin{aligned} \Vert e^{t\Delta }a -a\Vert _{1,\infty }&\ge \Vert e^{t\Delta }a-a\Vert _{L^{1,\infty }(\{|x|\ge L\})} \\&\ge \frac{1}{2}\Vert a \Vert _{L^{1,\infty }(\{|x|\ge L\})} - \Vert e^{t\Delta }a \Vert _{L^{1,\infty }(\{|x|\ge L\})} \\&\ge 1-8\varepsilon . \end{aligned} \end{aligned}$$

Since \(\varepsilon >0\) is arbitrary, choosing \(\varepsilon <1/8\), we conclude that \(e^{t\Delta }a \not \rightarrow a\) as \(t\rightarrow 0\) in \(L^{1,\infty }({\mathbb {R}})\), i.e., \(a \not \in \overline{D(\Delta )}^{\Vert \cdot \Vert _{1,\infty }}\). On the other hand, \(a \in L^{1,\infty }({\mathbb {R}})\cap L^\infty \subset {\widetilde{L}}^{1,\infty }({\mathbb {R}})\).

For \(n\ge 2\), we can apply a similar argument for solenoidal functions. In 2D case, we introduce

$$\begin{aligned} a(x_1,x_2)=R(x)\left( \frac{-x_2}{|x|^2}, \frac{x_1}{|x|^2}\right) \end{aligned}$$

where R(x) is modified with the Rademacher functions on dyadic squares. Then each segment

$$\begin{aligned} \pm \chi _{Q}(x)\left( \frac{-x_2}{|x|^2},\frac{x_1}{|x|^2}\right) \in L_{\sigma }^{2,\infty }({\mathbb {R}}^2), \end{aligned}$$

where Q is a square. This implies \((a,\nabla p)=0\) for all \(\nabla p\in G^{2,1}({\mathbb {R}}^2)\). Hence \(a \in L_{\sigma }^{2,\infty }({\mathbb {R}}^2)\). Finally, cutting off the singularity suitably, we obtain a desired example.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okabe, T., Tsutsui, Y. Remark on the strong solvability of the Navier–Stokes equations in the weak \(L^n\) space. Math. Ann. 383, 1353–1390 (2022). https://doi.org/10.1007/s00208-021-02236-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02236-0

Mathematics Subject Classification

Navigation