Skip to main content

Advertisement

Log in

Anisotropic Trudinger–Moser inequalities associated with the exact growth in \({\mathbb {R}}^N\) and its maximizers

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, suppose \(F: {\mathbb {R}}^{N} \rightarrow [0, +\infty )\) be a convex function of class \(C^{2}({\mathbb {R}}^{N} \backslash \{0\})\) which is even and positively homogeneous of degree 1. Firstly, we derive anisotropic Trudinger–Moser inequality with exact growth in \({\mathbb {R}}^N\), i.e., for any \(b>0\), there exists a constant \(C_{N, b}>0\) such that \(\int _{{\mathbb {R}}^{N}}\frac{\varPhi _N(\lambda |u|^{\frac{N}{N-1}})}{1+b|u|^{\frac{N}{N-1}}}dx \le C_{N, b}\Vert u\Vert _N^N, \quad \forall u\in W^{1, N}({\mathbb {R}}^{N}) \quad \text {with} \quad \int _{{\mathbb {R}}^N}F^{N}(\nabla u)dx \le 1, \) where \(\varPhi _N(t):=e^t-\sum _{k=0}^{N-2}\frac{t^k}{k!}\), \(\lambda \le \lambda _{N}=N^{\frac{N}{N-1}} \kappa _{N}^{\frac{1}{N-1}}\) and \(\kappa _{N}\) is the volume of a unit Wulff ball in \({\mathbb {R}}^N\). Moreover, this inequality fails if the power \(\frac{N}{N-1}\) is replaced by any \(p<\frac{N}{N-1}\). Secondly, we calculate the exact values of the supremums and give some results about nonexistence and existence of maximizers. Finally, we prove that anisotropic Trudinger–Moser inequality with the exact growth implies Trudinger–Moser inequality in \(W^{1, N}({\mathbb {R}}^N)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \({\mathbb{R}}^{N}\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

    Article  MATH  Google Scholar 

  2. Adams, D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi, A., Sandeep, K.: A singular Moser–Trudinger embedding and its applications. Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adimurthi, A., Yang, Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality. Int. Math. Res. Notices. 13, 2394–2426 (2010)

    MATH  Google Scholar 

  5. Alvino, A., Ferone, V., Trombetti, G., Lions, P.: Convex symmetrization and applications. Ann. Inst. H. Poincar\(\acute{e}\) Anal. Non Lin\(\acute{e}\)aire 14, 275–293 (1997)

  6. Belloni, M., Ferone, V., Kawohl, B.: Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Z. Angew. Math. Phys. 54, 771–783 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. J. Hokkaido Math. 25, 537–566 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R}}^{2}\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MATH  Google Scholar 

  9. Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of. J. Moser. Bull. Sci. Math. 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Chang, S.-Y.A., Yang, P.: The inequality of Moser and Trudinger and applications to conformal geometry. Commun. Pure Appl. Math. 56, 1135–1150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Csató, G., Roy, P.: Extremal functions for the singular Moser–Trudinger inequality in 2 dimensions. Calc. Var. Partial Differ. Equ. 54, 2341–2366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csató, G., Roy, P.: Singular Moser–Trudinger inequality on simply connected domains. Commun. Partial Differ. Equ. 41, 838–847 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csató, G., Nguyen, V.-H., Roy, P.: Extremals for the singular Moser–Trudinger inequality via \(n\)-harmonic transplantation. J. Differ. Equ. 270, 843–882 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Figueiredo, D.-G., Miyagaki, O.-H., Ruf, B.: Elliptic equations in \({\mathbb{R}}^2\) with nonlinearities in the critical growth range. Calc. Var. Partial. Differ. Equ. 3, 139–153 (1995)

    MATH  Google Scholar 

  15. de Figueiredo, D.-G., do Ó, J.-M., Ruf, B.: Elliptic equations and systems with critical Trudinger–Moser nonlinearities. Discr. Contin. Dyn. Syst. 30, 455–476 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. do Ó, J.-M.: N-Laplacian equations in \({\mathbb{R}}^{N}\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    MathSciNet  MATH  Google Scholar 

  17. do Ó, J.-M., de Souza, M., de Medeiros, E., Severo, U.: An improvement for the Trudinger–Moser inequality and applications. J. Differ. Equ. 256, 1317–1349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferone, V., Kawohl, B.: Remarks on a Finsler–Laplacian. Proc. Am. Math. Soc. 137, 247–253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flucher, M.: Extremal functions for Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helv. 67, 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinburgh Sect. A 119, 125–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ishiwata, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger–Moser type inequalities in \({\mathbb{R}}^N\). Math. Ann. 351(4), 781–804 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ikoma, N., Ishiwata, M., Wadade, H.: Existence and non-existence of maximizers for the Moser–Trudinger type inequalities under inhomogeneous constraints. Math. Ann. 373(1–2), 831–851 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Trudinger–Moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. (JEMS) 17(4), 819–835 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibrahim, S., Masmoudi, N., Nakanishi, K., Sani, F.: Sharp threshold nonlinearity for maximizing the Trudinger–Moser inequalities. J. Funct. Anal. 278, 108302 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298–325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24, 118–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities. Rev. Mat. Iberoam. 33, 1219–1246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lam, N., Lu, G., Zhang, L.: Existence and nonexistence of extremal functions for sharp Trudinger–Moser inequalities. Adv. Math. 352, 1253–1298 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^{N}\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differ. Equ. 264, 4901–4943 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, K.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, G., Tang, H.: Sharp singular Trudinger–Moser inequalities in Lorentz–Sobolev spaces. Adv. Nonlinear Stud. 16, 581–601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, G., Tang, H.: Sharp Moser–Trudinger inequalities on hyperbolic spaces with the exact growth condition. J. Geom. Anal. 26(2), 837–857 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, G., Tang, H., Zhu, M.: Best constants for Adams inequalities with the exact growth condition in \({\mathbb{R}}^n\). Adv. Nonlinear Stud. 15(4), 763–788 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Malchiodi, A., Martinazzi, L.: Critical points of the Moser–Trudinger functional on a disk. J. Eur. Math. Soc. (JEMS) 16, 893–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Masmoudi, N., Sani, F.: Adams’ inequality with the exact growth condition in \({\mathbb{R}}^4\). Commun. Pure Appl. Math. 67(8), 1307–1335 (2014)

    Article  MATH  Google Scholar 

  37. Masmoudi, N., Sani, F.: Trudinger–Moser inequalities with the exact growth condition in \({\mathbb{R}}^n\) and application. Commun. Partial Differ. Equ. 40, 1408–1440 (2015)

    Article  MATH  Google Scholar 

  38. Mancini, G., Martinazzi, L.: The Moser–Trudinger inequality and its extremals on a disk via energy estimates. Calc. Var. Partial Differ. Equ. 20, 56–94 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, V.-H.: The thresholds of the existence of maximizers for the critical sharp singular Moser-Trudinger inequality under constraints. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-02010-8

  41. Pohozaev, S.: The Sobolev embedding in the special case pl = n, in: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965, Mathematics Sections, Moscov. Energet. Inst. Moscow. 158–170 (1965)

  42. Peetre, J.: Espaces d’interpolation et theoreme de Soboleff. Ann. Inst. Fourier (Grenoble) 16, 279–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^{2}\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ruf, B., Sani, F.: Sharp Adams-type inequalities in \({\mathbb{R}}^{n}\). Trans. Amer. Math. Soc. 365, 645–670 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Struwe, M.: Critical points of embeddings of \(H_{0}^{1, n}\) into Orlicz spaces. Ann. Inst. H. Poincar\(\acute{e}\) Anal. Non Lin\(\acute{e}\)aire 5, 425–464 (1988)

  46. Talenti, G.: Elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3, 697–718 (1976)

    MathSciNet  MATH  Google Scholar 

  47. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

  48. Wang, G., Xia, C.: A characterization of the Wulff shape by an overdetermined anisotropic PDE. Arch. Ration. Mech. Anal. 99, 99–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, G., Xia, C.: Blow-up analysis of a Finsler–Liouville equation in two dimensions. J. Differ. Equ. 252, 1668–1700 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xie, R., Gong, H.: A priori estimates and blow-up behavior for solutions of \(-Q_Nu = V e^u\) in bounded domain in \({\mathbb{R}}^{N}\). Sci. Chin. Math. 59, 479–492 (2016)

    Article  MATH  Google Scholar 

  51. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Sov. Math. Dokl. 2, 746–749 (1961)

    MATH  Google Scholar 

  52. Zhou, C.-L., Zhou, C.-Q.: Moser–Trudinger inequality involving the anisotropic Dirichlet norm \((\int _{\varOmega }F^{N}(\nabla u)dx)^{\frac{1}{N}}\) on \(W_{0}^{1, N}(\varOmega )\). J. Funct. Anal. 276, 2901–2935 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhou, C.-L., Zhou, C.-Q.: On the anisotropic Moser-Trudinger inequality for unbounded domains in \({\mathbb{R}}^n\). Discrete Contin. Dyn. Syst. 40, 847–881 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CSC(No. 2019062400056). The author is grateful to Prof. Guofang Wang for his advice in this subject. The author would like to express his hearty thanks to the anonymous referee for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Liu.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Anisotropic Trudinger–Moser inequalities associated with the exact growth in \({\mathbb {R}}^N\) and its maximizers. Math. Ann. 383, 921–941 (2022). https://doi.org/10.1007/s00208-021-02194-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02194-7

Mathematics Subject Classification

Navigation