Skip to main content
Log in

Sharp anisotropic singular Trudinger–Moser inequalities in the entire space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we investigate sharp singular Trudinger–Moser inequalities involving the anisotropic Dirichlet norm \(\left( \int _{{\mathbb {R}}^{N}}F^{N}(\nabla u)\;\textrm{d}x\right) ^{\frac{1}{N}}\) in Sobolev-type space \(D^{N,q}(\mathbb {R}^{N})\), \(N\ge 2\), \(q\ge 1\). Here \(F:\mathbb {R}^{N}\rightarrow [0,+\infty )\) is a convex function of class \(C^{2}(\mathbb {R}^{N}\setminus \{0\})\), which is even and positively homogeneous of degree 1. Combing with the connection between convex symmetrization and Schwarz symmetrization, we will establish anisotropic singular Trudinger–Moser inequalities and discuss their sharpness under different situations, including the case \(\Vert F(\nabla u)\Vert _{N}\le 1\), the case \(\Vert F(\nabla u)\Vert _{N}^{a}+\Vert u\Vert _{q}^{b}\le 1\), and whether they are associated with exact growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \(\mathbb{R} ^{N}\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

    Article  Google Scholar 

  2. Adimurthi, Sandeep, K.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13, 585–603 (2007)

    Article  MathSciNet  Google Scholar 

  3. Alvino, A., Ferone, V., Trombetti, G., Lions, P.: Convex symmetrization and applications. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14, 275–293 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25, 537–566 (1996)

    Article  MathSciNet  Google Scholar 

  5. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R} ^{2}\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  Google Scholar 

  6. Cohn, W.S., Lu, G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50, 1567–1591 (2001)

    Article  MathSciNet  Google Scholar 

  7. do Ó, J.M.: \(N\)-Laplacian equations in \(\mathbb{R}^{N}\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  Google Scholar 

  8. Ferone, V., Kawohl, B.: Remarks on a Finsler–Laplacian. Proc. Am. Math. Soc. 137, 247–253 (2009)

    Article  MathSciNet  Google Scholar 

  9. Guedes de Figueiredo, D., dos Santos, E.M., Miyagaki, O.H.: Sobolev spaces of symmetric functions and applications. J. Funct. Anal. 261, 3735–3770 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Trudinger–Moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. 17, 819–835 (2015)

    Article  MathSciNet  Google Scholar 

  11. Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality. Indiana Univ. Math. J. 55, 1951–1974 (2006)

    Article  MathSciNet  Google Scholar 

  12. Lam, N., Lu, G.: Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231, 3259–3287 (2012)

    Article  MathSciNet  Google Scholar 

  13. Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298–325 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lam, N., Lu, G.: Sharp singular Trudinger–Moser–Adams type inequalities with exact growth. In: Geometric Methods in PDE’s, volume 13 of Springer INdAM Series, pp. 43–80. Springer, Cham (2015)

  15. Lam, N., Lu, G., Tang, H.: Sharp subcritical Moser–Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal. 95, 77–92 (2014)

    Article  MathSciNet  Google Scholar 

  16. Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R} ^{n}\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  Google Scholar 

  17. Liu, Y.: Anisotropic Trudinger–Moser inequalities associated with the exact growth in \(\mathbb{R} ^{N}\) and its maximizers. Math. Ann. 383, 921–941 (2022)

    Article  MathSciNet  Google Scholar 

  18. Lu, G., Tang, H.: Best constants for Moser–Trudinger inequalities on high dimensional hyperbolic spaces. Adv. Nonlinear Stud. 13, 1035–1052 (2013)

    Article  MathSciNet  Google Scholar 

  19. Lu, G., Tang, H.: Sharp Moser–Trudinger inequalities on hyperbolic spaces with exact growth condition. J. Geom. Anal. 26, 837–857 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lu, G., Tang, H., Zhu, M.: Best constants for Adams’ inequalities with the exact growth condition in \(\mathbb{R} ^{n}\). Adv. Nonlinear Stud. 15, 763–788 (2015)

    Article  MathSciNet  Google Scholar 

  21. Masmoudi, N., Sani, F.: Adams’ inequality with the exact growth condition in \(\mathbb{R} ^{4}\). Commun. Pure Appl. Math. 67, 1307–1335 (2014)

    Article  Google Scholar 

  22. Masmoudi, N., Sani, F.: Trudinger–Moser inequalities with the exact growth condition in \(\mathbb{R} ^{N}\) and applications. Commun. Partial Differ. Equ. 40, 1408–1440 (2015)

    Article  Google Scholar 

  23. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  24. Ogawa, T.: A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14, 765–769 (1990)

    Article  MathSciNet  Google Scholar 

  25. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  Google Scholar 

  26. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R} ^2\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  Google Scholar 

  27. Song, X., Li, D., Zhu, M.: Critical and subcritical anisotropic Trudinger–Moser inequalities on the entire Euclidean spaces. Math. Probl. Eng. 1, 1–13 (2021)

    Google Scholar 

  28. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3, 697–718 (1976)

    MathSciNet  Google Scholar 

  29. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  Google Scholar 

  30. Wang, G., Xia, C.: A characterization of the Wuff shape by an overdetermined anisotropic PDE. Arch. Ration. Mech. Anal. 199, 99–115 (2011)

    Article  MathSciNet  Google Scholar 

  31. Wang, G., Xia, C.: Blow-up analysis of a Finsler–Liouville equation in two dimensions. J. Differ. Equ. 252, 1668–1700 (2012)

    Article  MathSciNet  Google Scholar 

  32. Xie, R., Gong, H.: A priori estimates and blow-up behavior for solutions of \(-Q_Nu = V e^u\) in bounded domain in \(\mathbb{R} ^{N}\). Sci. China Math. 59, 479–492 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yudovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations (Russian). Dokl. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

  34. Zhou, C., Zhou, C.: Moser–Trudinger inequality involving the anisotropic Dirichlet norm \((\int _{\Omega }F^{N}(\nabla u)dx)^{\frac{1}{N}}\) on \(W_{0}^{1, N}(\Omega )\). J. Funct. Anal. 276, 2901–2935 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zhou, C., Zhou, C.: On the anisotropic Moser–Trudinger inequality for unbounded domains in \(\mathbb{R} ^{n}\). Discrete Contin. Dyn. Syst. 40, 847–881 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Liu.

Additional information

Communicated by A. Mondino

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (12201089, 12371051), the Natural Science Foundation Project of Chongqing (CSTB2022NSCQ-MSX0226), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202200513), the Innovation projects for studying abroad and returning to China(cx2023097) and Chongqing Normal University Foundation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Liu, Y. Sharp anisotropic singular Trudinger–Moser inequalities in the entire space. Calc. Var. 63, 82 (2024). https://doi.org/10.1007/s00526-024-02700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02700-0

Mathematics Subject Classification

Navigation