Skip to main content
Log in

Spectral preorder and perturbations of discrete weighted graphs

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

To Hagen Neidhardt in memoriam.

Abstract

In this article, we introduce a geometric and a spectral preorder relation on the class of weighted graphs with a magnetic potential. The first preorder is expressed through the existence of a graph homomorphism respecting the magnetic potential and fulfilling certain inequalities for the weights. The second preorder refers to the spectrum of the associated Laplacian of the magnetic weighted graph. These relations give a quantitative control of the effect of elementary and composite perturbations of the graph (deleting edges, contracting vertices, etc.) on the spectrum of the corresponding Laplacians, generalising interlacing of eigenvalues. We give several applications of the preorders: we show how to classify graphs according to these preorders and we prove the stability of certain eigenvalues in graphs with a maximal d-clique. Moreover, we show the monotonicity of the eigenvalues when passing to spanning subgraphs and the monotonicity of magnetic Cheeger constants with respect to the geometric preorder. Finally, we prove a refined procedure to detect spectral gaps in the spectrum of an infinite covering graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Note that in this article we switched to the more standard (and for our purposes more convenient) notation that an edge e (also called an arrow) always has its oppositely oriented counterpart \({\bar{e}}\) in E as in [15, 38]; in our older articles (e.g. in [17]) we used the convention that E contains only one arrow (not its opposite arrow), hence in our older notation E together with \(\partial e=(\partial _+e,\partial _-e)\) determines already an orientation of the graph.

  2. Note that in some references the standard weight is also called normalised.

References

  1. Atay, F.M., Tunçel, H.: On the spectrum of the normalized Laplacian for signed graphs: interlacing, contraction, and replication. Lin. Alg. Appl. 442, 165–177 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bapat, R.B.: Graphs and Matrices. Springer, London (2010)

    Book  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

    Book  Google Scholar 

  4. Bonnefont, M., Golénia, S., Keller, M., Liu, S., Münch, F.: Magnetic-sparseness and Schrödinger Operators on graphs. Ann. Henri Poincaré 21, 1489–1516 (2020)

    Article  MathSciNet  Google Scholar 

  5. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Universitext. Springer, New York (2012)

    Book  Google Scholar 

  6. Berkolaiko, G., Kennedy, J.B., Kurasov, P., Mugnolo, D.: Surgery principles for the spectral analysis of quantum graphs. Trans. Am. Math. Soc. 372, 5153–5197 (2019)

    Article  MathSciNet  Google Scholar 

  7. Butler, S.: Interlacing for weighted graphs using the normalized Laplacian. Electr. J. Lin. Alg. 16, 90–98 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs, Theory and Applications, 3rd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  9. Chen, G., Davis, G., Hall, F., Li, Z., Patel, K., Stewart, M.: An interlacing result on normalized Laplacians. SIAM J. Discret. Math. 18, 353–361 (2004)

    Article  MathSciNet  Google Scholar 

  10. Colin de Verdière, Y.: Spectres de Graphes, Cours Spécialisés [Specialized Courses], vol. 4. Société Mathématique de France, Paris (1998)

    Google Scholar 

  11. Chung, F.: Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC (1997)

  12. Diestel, R.: Graph Theory. Springer, New York (2000)

    MATH  Google Scholar 

  13. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284, 787–794 (1984)

    Article  MathSciNet  Google Scholar 

  14. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A.: (eds.), Analysis on graphs and its applications. In: Proceedings of Symposia in Pure Mathematics, vol. 77. American Mathematical Society, Providence (2008)

  15. Fabila-Carrasco, J.S.: The discrete magnetic Laplacian: geometric and spectral preorders with applications. PhD thesis, Universidad Carlos III de Madrid (2020)

  16. Fabila-Carrasco, J.S., Lledó, F.: Covering graphs, magnetic spectral gaps and applications to polymers and nanoribbons. Symmetry-Basel 11, 1163 (2019)

    Article  Google Scholar 

  17. Fabila-Carrasco, J.S., Lledó, F., Post, O.: Spectral gaps and discrete magnetic Laplacians. Linear Algebra Appl. 547, 183–216 (2018)

    Article  MathSciNet  Google Scholar 

  18. Carrasco, J.S. Fabila, Lledó, F., Post, O.: Isospectral magnetic graphs preprint (2020)

  19. Fiedler, M.: Algebraic connectivity of graphs. Czec. Math. J. 23, 298–305 (1973)

    Article  MathSciNet  Google Scholar 

  20. Hogben, L.: Spectral graph theory and the inverse eigenvalue problem of a graph. Electron. J. Linear Algebra 14, 12–31 (2005)

    Article  MathSciNet  Google Scholar 

  21. Higuchi, Y., Nomura, Y.: Spectral structure of the Laplacian on a covering graph. Eur. J. Combin. 30, 570–585 (2009)

    Article  MathSciNet  Google Scholar 

  22. Higuchi, Y., Shirai, T.: Weak Bloch property for discrete magnetic Schrödinger operators. Nagoya Math. J. 161, 127–154 (2001)

    Article  MathSciNet  Google Scholar 

  23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  24. Korotyaev, E., Saburova, N.: Spectral band localization for Schrödinger operators on discrete periodic graphs. Proc. Am. Math. Soc. 143, 3951–3967 (2015)

    Article  Google Scholar 

  25. Korotyaev, E., Saburova, N.: Magnetic Schrödinger operators on periodic discrete graphs. J. Funct. Anal. 272, 1625–1660 (2017)

    Article  MathSciNet  Google Scholar 

  26. Korotyaev, E., Saburova, N.: Invariants for Laplacians on periodic graphs. Math. Ann. (2019). https://doi.org/10.1007/s00208-019-01842-3

    Article  MATH  Google Scholar 

  27. Lange, C., Liu, S., Peyerimhoff, N., Post, O.: Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians. Calc. Var. Partial Differ. Equ. 54, 4165–4196 (2015)

    Article  MathSciNet  Google Scholar 

  28. Li, C.K.: A short proof of interlacing inequalities on normalized Laplacians Lin. Alg. Appl. 414, 425–427 (2006)

    Article  Google Scholar 

  29. Lledó, F., Post, O.: Existence of spectral gaps, covering manifolds and residually finite groups. Rev. Math. Phys. 20, 199–231 (2008)

    Article  MathSciNet  Google Scholar 

  30. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  31. Mohar, B.: Laplacian: The Spectrum of Graphs, Graph Theory, Combinatorics, and Applications (Kalamazoo, MI, 1988), vol. 2, pp. 871–898. Wiley, New York (1991)

    Google Scholar 

  32. Mohar, B.: A domain monotonicity theorem for graphs and Hamiltonicity. Discret. Appl. Math. 36, 169–177 (1992)

    Article  MathSciNet  Google Scholar 

  33. Mathai, V., Yates, S.: Approximating spectral invariants of Harper operators on graphs. J. Funct. Anal. 188, 111–136 (2002)

    Article  MathSciNet  Google Scholar 

  34. Olson, M.P.: The self adjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Am. Math. Soc. 28, 537–544 (1971)

    Article  Google Scholar 

  35. Post, O.: Spectral Analysis on Graph-Like Spaces. Lecture Notes in Mathematics, vol. 2039. Springer, Heidelberg (2012)

    Book  Google Scholar 

  36. Sunada, T.: A Discrete Analogue of Periodic Magnetic SchröDinger Operators, Geometry of the spectrum (Seattle, WA, 1993), Contemporary Mathematics, vol. 173, pp. 283–299. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  37. Sunada, T.: Discrete geometric analysis. In: [EKK08], pp. 51–83 (2008)

  38. Sunada, T.: Topological Crystallography: With a View Towards Discrete Geometric Analysis. Springer, Berlin (2012)

    MATH  Google Scholar 

  39. van den Heuvel, J.: Hamilton cycles and eigenvalues of graphs. Lin. Alg. Appl. 226–228, 723–730 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank a referee of this article for her/his very thorough review, comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lledó.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JSFC and FLl were supported by Spanish Ministry of Economy and Competitiveness through project DGI MTM2017-84098-P, from the Severo Ochoa Programme for Centres of Excellence in R& D (SEV-2015-0554) and from the Spanish National Research Council, through the Ayuda extraordinaria a Centros de Excelencia Severo Ochoa (20205CEX001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabila-Carrasco, J.S., Lledó, F. & Post, O. Spectral preorder and perturbations of discrete weighted graphs. Math. Ann. 382, 1775–1823 (2022). https://doi.org/10.1007/s00208-020-02091-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02091-5

Keywords

Mathematics Subject Classification

Navigation