Skip to main content
Log in

Unlikely intersections with isogeny orbits in a product of elliptic schemes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Fix an elliptic curve \(E_0\) without CM and a non-isotrivial elliptic scheme over a smooth irreducible curve, both defined over the algebraic numbers. Consider the union of all images of a fixed finite-rank subgroup (of arbitrary rank) of \(E_0^g\), also defined over the algebraic numbers, under all isogenies between \(E_0^g\) and some fiber of the g-th fibered power \(\mathcal {A}\) of the elliptic scheme, where g is a fixed natural number. As a special case of a slightly more general result, we characterize the subvarieties (of arbitrary dimension) inside \(\mathcal {A}\) that have potentially Zariski dense intersection with this set. In the proof, we combine a generalized Vojta–Rémond inequality with the Pila–Zannier strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bainbridge, M., Habegger, P., Möller, M.: Teichmüller curves in genus three and just likely intersections in \({ G}^n_m\times { G}^n_a\). Publ. Math. Inst. Hautes Études Sci. 124, 1–98 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Baldi, G.: On a conjecture of Buium and Poonen. arXiv:1803.04946, to appear in Ann. Inst. Fourier (Grenoble) (2019)

  3. Bogomolov, F.A.: Points of finite order on abelian varieties. Izv. Akad. Nauk SSSR Ser. Mat. 44(4), 782–804 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. New Mathematical Monographs, vol. 4. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  5. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21. Springer, Berlin (1990)

    Google Scholar 

  6. D’Andrea, C., Krick, T., Sombra, M.: Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze. Ann. Sci. Éc. Norm. Supér. (4) 46(4), 549–627 (2013)

  7. Daw, C., Orr, M.: Unlikely intersections with \({E}\) \(\times \) CM curves in \(\cal{A}_2\). arXiv:1902.10483 (2019)

  8. Dill, G.A.: Unlikely intersections between isogeny orbits and curves. arXiv:1801.05701, to appear in J. Eur. Math. Soc. (JEMS) (2019)

  9. Dill, G.A.: Unlikely Intersections with Isogeny Orbits. PhD thesis, Universität Basel (2019)

  10. Dill, G.A.: Generalized Vojta–Rémond inequality. Int. J. Number Theory 16(1), 107–120 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Faltings, G.: Diophantine approximation on abelian varieties. Ann. Math. (2) 133(3), 549–576 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Faltings, G.: The general case of S. Lang’s conjecture. Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), vol. 15 of Perspect. Math., pp. 175–182. Academic Press, San Diego (1994)

  14. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2. Springer, Berlin (1984)

    Google Scholar 

  15. Gao, Z.: A special point problem of André–Pink–Zannier in the universal family of Abelian varieties. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17(1), 231–266 (2017)

  16. Gao, Z.: Towards the Andre–Oort conjecture for mixed Shimura varieties: The Ax–Lindemann theorem and lower bounds for Galois orbits of special points. J. Reine Angew. Math. 732, 85–146 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Gaudron, E., Rémond, G.: Théorème des périodes et degrés minimaux d’isogénies. Comment. Math. Helv. 89(2), 343–403 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Görtz, U., Wedhorn, T.: Algebraic Geometry I. Advanced Lectures in Mathematics. Schemes with Examples and Exercises. Vieweg + Teubner, Wiesbaden (2010)

    MATH  Google Scholar 

  19. Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. 4, 5–228 (1960)

    Google Scholar 

  20. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math. 24, 5–231 (1965)

    MATH  Google Scholar 

  21. Habegger, P.: Weakly bounded height on modular curves. Acta Math. Vietnam. 35(1), 43–69 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Habegger, P.: Special points on fibered powers of elliptic surfaces. J. Reine Angew. Math. 685, 143–179 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Habegger, P., Pila, J.: Some unlikely intersections beyond André–Oort. Compos. Math. 148(1), 1–27 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Habegger, P., Pila, J.: O-minimality and certain atypical intersections. Ann. Sci. Éc. Norm. Supér. (4) 49(4), 813–858 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

    Google Scholar 

  26. Hindry, M.: Autour d’une conjecture de Serge Lang. Invent. Math. 94(3), 575–603 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Hindry, M., Silverman, J.H.: Diophantine Geometry, vol. 201 of Graduate Texts in Mathematics. An introduction. Springer, New York (2000)

    Google Scholar 

  28. Kempf, G.R.: Algebraic Varieties. London Mathematical Society Lecture Note Series, vol. 172. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  29. Lang, S.: Abelian Varieties. Interscience Tracts in Pure and Applied Mathematics. No. 7. Interscience Publishers Inc, New York (1959)

    Google Scholar 

  30. Lelong, P.: Mesure de Mahler et calcul de constantes universelles pour les polynômes de \(n\) variables. Math. Ann. 299(4), 673–695 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Lenstra Jr., H.W., Oort, F., Zarhin, Y.G.: Abelian subvarieties. J. Algebra 180(2), 513–516 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Lieberman, D.I.: Numerical and homological equivalence of algebraic cycles on Hodge manifolds. Am. J. Math. 90, 366–374 (1968)

    MathSciNet  MATH  Google Scholar 

  33. Lin, Q., Wang, M.-X.: Isogeny orbits in a family of abelian varieties. Acta Arith. 170(2), 161–173 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Masser, D.W., Wüstholz, G.: Estimating isogenies on elliptic curves. Invent. Math. 100(1), 1–24 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Masser, D.W., Wüstholz, G.: Isogeny estimates for abelian varieties, and finiteness theorems. Ann. Math. (2) 137(3), 459–472 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Masser, D.W., Zannier, U.: Torsion anomalous points and families of elliptic curves. Am. J. Math. 132(6), 1677–1691 (2010)

    MathSciNet  MATH  Google Scholar 

  37. McQuillan, M.: Division points on semi-abelian varieties. Invent. Math. 120(1), 143–159 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Milne, J.S.: Abelian varieties. Arithmetic Geometry (Storrs, Conn., 1984), pp. 103–150. Springer, New York (1986)

  39. Murty, V.K.: Computing the Hodge group of an abelian variety. In: Séminaire de Théorie des Nombres, Paris 1988–1989, vol. 91 of Progr. Math., pp. 141–158. Birkhäuser, Boston (1990)

    Google Scholar 

  40. Orr, M.: Families of abelian varieties with many isogenous fibres. J. Reine Angew. Math. 705, 211–231 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Orr, M.: Height bounds and the Siegel property. Algebra Number Theory 12(2), 455–478 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Peterzil, Y., Starchenko, S.: Uniform definability of the Weierstrass \(\wp \) functions and generalized tori of dimension one. Sel. Math. (N.S.) 10(4), 525–550 (2004)

  43. Philippon, P.: Critères pour l’indépendance algébrique. Inst. Hautes Études Sci. Publ. Math. 64, 5–52 (1986)

    MathSciNet  MATH  Google Scholar 

  44. Philippon, P.: Sur des hauteurs alternatives. III. J. Math. Pures Appl. (9) 74(4), 345–365 (1995)

    MathSciNet  MATH  Google Scholar 

  45. Pila, J.: Rational points of definable sets and results of André–Oort–Manin–Mumford type. Int. Math. Res. Not. IMRN 13, 2476–2507 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Pila, J.: Special point problems with elliptic modular surfaces. Mathematika 60(1), 1–31 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Pila, J., Tsimerman, J.: The André–Oort conjecture for the moduli space of abelian surfaces. Compos. Math. 149(2), 204–216 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Pila, J., Tsimerman, J.: Independence of CM points in Elliptic Curves. arXiv:1907.02737 (2019)

  49. Pink, R.: A combination of the conjectures of Mordell–Lang and André–Oort. Geometric Methods in Algebra and Number Theory, vol. 235 of Progr. Math., pp. 251–282. Birkhäuser, Boston (2005)

    Google Scholar 

  50. Rémond, G.: Inégalité de Vojta en dimension supérieure. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(1), 101–151 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Rémond, G.: Élimination multihomogène. In: Introduction to Algebraic Independence Theory, vol. 1752 of Lecture Notes in Math., pp. 53–81. Springer, Berlin (2001)

  52. Rémond, G.: Géométrie diophantienne multiprojective. Introduction to Algebraic Independence Theory, vol. 1752 of Lecture Notes in Math., pp. 95–131. Springer, Berlin (2001)

    Google Scholar 

  53. Rémond, G.: Inégalité de Vojta généralisée. Bull. Soc. Math. France 133(4), 459–495 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Silverman, J.H.: Heights and elliptic curves. Arithmetic Geometry (Storrs, Conn., 1984), pp. 253–265. Springer, New York (1986)

  55. van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions. Israel J. Math. 85(1–3), 19–56 (1994)

    MathSciNet  MATH  Google Scholar 

  56. Vojta, P.: Siegel’s theorem in the compact case. Ann. Math. (2) 133(3), 509–548 (1991)

    MathSciNet  MATH  Google Scholar 

  57. Vojta, P.: Applications of arithmetic algebraic geometry to Diophantine approximations. Arithmetic Algebraic Geometry (Trento, 1991), vol. 1553 of Lecture Notes in Math., pp. 164–208. Springer, Berlin (1993)

  58. Von Buhren, J.: Borne de hauteur semi–effective pour le problème de Mordell–Lang dans une variété abélienne. J. Théor. Nombres Bordeaux 29(1), 307–320 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Zannier, U.: Some Problems of Unlikely Intersections in Arithmetic and Geometry, vol. 181 of Annals of Mathematics Studies. With appendixes by D.W. Masser. Princeton University Press, Princeton (2012)

  60. Zimmer, H.G.: On the difference of the Weil height and the Néron–Tate height. Math. Z. 147(1), 35–51 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank my advisor Philipp Habegger for suggesting to study this problem and to apply a generalized Vojta–Rémond inequality in this context as well as for his constant support. I thank Philipp Habegger and Gaël Rémond for many useful and interesting discussions and for helpful comments on a preliminary version of this article. I thank the anonymous referee for their helpful suggestions. I thank the Institut Fourier in Grenoble for its hospitality, which I enjoyed while writing substantial portions of this article. This work was supported by the Swiss National Science Foundation as part of the project “Diophantine Problems, o-Minimality, and Heights”, no. 200021_165525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. Dill.

Additional information

Communicated by Kannan Soundararajan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Generalized Vojta–Rémond inequality

Appendix A. Generalized Vojta–Rémond inequality

Let \(m \ge 2\) be an integer and let \(X_1, \ldots , X_m\) be a family of irreducible positive-dimensional projective varieties, defined over \(\bar{\mathbb {Q}}\). In the present work, we use a generalization [10] of Rémond’s results of [53] to the case of an algebraic point \(x = (x_1,\ldots ,x_m)\) in the product \(X = X_1 \times \cdots \times X_m\). Let us briefly recall the hypotheses which come into play. We follow the exposition of [10].

For an m-tuple \(a = (a_1,\ldots ,a_m)\) of positive integers, we write

$$\begin{aligned} \mathcal {N}_a = \bigotimes _{i=1}^{m}{p_i^{*}\mathcal {L}_i^{\otimes a_i}},\end{aligned}$$

where \(\mathcal {L}_i\) is a fixed very ample line bundle on \(X_i\) and \(p_i: X_1 \times \cdots \times X_m \rightarrow X_i\) is the natural projection. We relate a to a nef line bundle \(\mathcal {M}\) on X which satisfies some further conditions, specified below.

By (a system of) homogeneous coordinates for a very ample line bundle we mean the set of pull-backs of the homogeneous coordinates on some \(\mathbb {P}^{N'}\) under a closed embedding into \(\mathbb {P}^{N'}\) that is associated to that line bundle. Let \(W^{(i)} \subset \Gamma (X_i,\mathcal {L}_i)\) be a fixed system of homogeneous coordinates on \(X_i\). We identify \(p_i^{*}W^{(i)}\) with \(W^{(i)}\).

By an injection of line bundles we mean an injective morphism between the associated invertible sheaves. We fix a non-empty open subset \(U^0\) of X and suppose that there exists a very ample line bundle \(\mathcal {P}\) on X, an injection \(\mathcal {P} \hookrightarrow \mathcal {N}_a^{\otimes t_1}\) which induces an isomorphism on \(U^0\) and a system of homogeneous coordinates \(\Xi \) for \(\mathcal {P}\) which are (by means of the aforementioned injection) monomials of multidegree \(t_1a\) in the \(W^{(i)}\).

We also suppose that there exists an injection \((\mathcal {P} \otimes \mathcal {M}^{\otimes -1}) \hookrightarrow \mathcal {N}_a^{\otimes t_2}\) which induces an isomorphism on \(U^0\) and that \(\mathcal {P} \otimes \mathcal {M}^{\otimes -1}\) is generated by a family Z of M global sections on X which are polynomials of multidegree \(t_2a\) in the \(W^{(i)}\) such that the height of the family of coefficients of all these polynomials is at most \(\sum _{i} a_i \delta _i\).

The parameters \(t_1, t_2, M \in \mathbb {N}\) and \(\delta _1, \ldots , \delta _m \in [1,\infty )\) are fixed independently of the pair \((a,\mathcal {M})\). Using this pair, we can define the following two notions of height for a point \(x \in U^0(\bar{\mathbb {Q}})\):

$$\begin{aligned} h_{\mathcal {M}}(x) = h(\Xi (x)) - h(Z(x)),\end{aligned}$$
$$\begin{aligned} h_{\mathcal {N}_a}(x) = a_1h\left( W^{(1)}(x)\right) + \cdots + a_mh\left( W^{(m)}(x)\right) .\end{aligned}$$

Let \(\theta \ge 1\) and \(\omega \ge -1\) be two integer parameters and set (with \(\omega ' = 3 + \omega \))

$$\begin{aligned} \Lambda = \theta (2t_1u_0)^{u_0}\left( \max _{1 \le i \le m}{N_i}+1\right) \prod _{i=1}^{m}{\deg (X_i)},\end{aligned}$$
$$\begin{aligned} \psi (u) = \prod _{j=u+1}^{u_0}{(\omega 'j+1)}, \end{aligned}$$
$$\begin{aligned} c_1 = c_2 = \Lambda ^{\psi (0)},\end{aligned}$$
$$\begin{aligned} c^{(i)}_3 = \Lambda ^{2\psi (0)}(Mt_2)^{u_0}(h(X_i)+\delta _i) \quad (i=1,\ldots ,m), \end{aligned}$$

where \(u_0 = \dim (X_1)+\cdots +\dim (X_m)\), \(N_i+1 = \#W^{(i)}\) and the degrees and heights are computed with respect to the embeddings given by the \(W^{(i)}\).

Theorem A.1

Let \(x \in U^0(\bar{\mathbb {Q}})\) and let \((a,\mathcal {M})\) be a pair as defined above. Suppose that, for every subproduct of the form \(Y = Y_1 \times \cdots \times Y_m\), where \(Y_i \subset X_i\) is an irreducible subvariety that contains \(x_i\), the following estimate holds:

$$\begin{aligned} \mathcal {M}^{\cdot \dim (Y)} \cdot Y \ge \theta ^{-1}\prod _{i=1}^{m}{(\deg (Y_i))^{-\omega }a_i^{\dim (Y_i)}}.\end{aligned}$$

If furthermore \(c_2a_{i+1} \le a_i\) for every \(i < m\) and \(c^{(i)}_3 \le h\left( W^{(i)}(x_i)\right) \) for every \(i \le m\), then we have

$$\begin{aligned} h_{\mathcal {N}_a}(x) \le c_1 h_{\mathcal {M}}(x).\end{aligned}$$

Proof

See [10] with \(\mathcal {X} = X\) and \(\pi = {{\,\mathrm{id}\,}}_X\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dill, G.A. Unlikely intersections with isogeny orbits in a product of elliptic schemes. Math. Ann. 377, 1509–1545 (2020). https://doi.org/10.1007/s00208-020-02024-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02024-2

Mathematics Subject Classification

Navigation