Skip to main content
Log in

Normalized solutions for a coupled Schrödinger system

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In the present paper, we prove the existence of solutions \((\lambda _1,\lambda _2,u,v)\in \mathbb {R}^2\times H^1(\mathbb {R}^3,\mathbb {R}^2)\) to systems of coupled Schrödinger equations

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda _1u=\mu _1 u^3+\beta uv^2\quad &{}\hbox {in}\;\mathbb {R}^3\\ -\Delta v+\lambda _2v=\mu _2 v^3+\beta u^2v\quad &{}\hbox {in}\;\mathbb {R}^3\\ u,v>0&{}\hbox {in}\;\mathbb {R}^3 \end{array}\right. } \end{aligned}$$

satisfying the normalization constraint \( \int _{\mathbb {R}^3}u^2=a^2\quad \hbox {and}\;\int _{\mathbb {R}^3}v^2=b^2, \) which appear in binary mixtures of Bose–Einstein condensates or in nonlinear optics. The parameters \(\mu _1,\mu _2,\beta >0\) are prescribed as are the masses \(a,b>0\). The system has been considered mostly in the case of fixed frequencies \(\lambda _1,\lambda _2\). When the masses are prescribed, the standard approach to this problem is variational with \(\lambda _1,\lambda _2\) appearing as Lagrange multipliers. Here we present a new approach based on the fixed point index in cones, bifurcation theory, and the continuation method. We obtain the existence of normalized solutions for any given \(a,b>0\) for \(\beta \) in a large range. We also have a result about the nonexistence of positive solutions which shows that our existence theorem is almost optimal. Especially, if \(\mu _1=\mu _2\) we prove that normalized solutions exist for all \(\beta >0\) and all \(a,b>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82(13), 2661 (1999)

    Article  Google Scholar 

  2. Alexander, J.C., Antman, S.: Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems. Arch. Ration. Mech. Anal. 76(4), 339–354 (1981)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342(7), 453–458 (2006)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75(1), 67–82 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Dancer, N.: Poincaré–Hopf type formulas on convex sets of Banach spaces. Topol. Methods Nonlinear Anal. 34, 213–229 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Diifer. Equ. 37, 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinburgh Sect. A 148(2), 225–242 (2018)

    Article  Google Scholar 

  8. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pures Appl. (9) 106(4), 583–614 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    Article  MathSciNet  Google Scholar 

  10. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. 58, 22 (2019)

    Article  Google Scholar 

  11. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)

    MATH  Google Scholar 

  12. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    Article  MathSciNet  Google Scholar 

  13. Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2001)

    Article  MathSciNet  Google Scholar 

  14. Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48(3–4), 695–711 (2013)

    Article  Google Scholar 

  15. Crandall, M., Rabinowitz, P.: Bifurcation form fimple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  Google Scholar 

  16. Crandall, M., Rabinowitz, P.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  Google Scholar 

  17. Dancer, E., Wei, J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    Article  Google Scholar 

  18. Esry, B.D., Greene, C.H., Burke Jr., J.P., Bohn, J.L.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594 (1997)

    Article  Google Scholar 

  19. Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A Math. Theor. 43, 213001 (2010)

    Article  MathSciNet  Google Scholar 

  20. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MathSciNet  Google Scholar 

  21. Gou, T., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31(2), 2319–2345 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 40(3–4), 449–480 (2011)

    Article  Google Scholar 

  23. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u- u+ u^p= 0\) in \({\mathbb{R}}^n\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  Google Scholar 

  24. Lin, T.-C., Wei, J.: Ground state of n coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n, n\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  Google Scholar 

  25. Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)

    Article  Google Scholar 

  26. Mandel, R.: Minimal energy solutions and infinitely many bifurcating branches for a class of saturated nonlinear Schrödinger systems. Adv. Nonlinear Stud. 16(1), 95–113 (2016)

    Article  MathSciNet  Google Scholar 

  27. Noris, B., Tavares, H., Verzini, G.: Stable solitary waves with prescribed \(L^2\)-mass for the cubic Schrödinger system with trapping potential. Discrete Contin. Dyn. Syst. 35(12), 6085–6112 (2015)

    Article  MathSciNet  Google Scholar 

  28. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    Article  MathSciNet  Google Scholar 

  29. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \(\mathbb{R}^n\). Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  Google Scholar 

  30. Soave, N.: On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition. Calc. Var. Partial Differ. Equ. 53(3–4), 689–718 (2015)

    Article  MathSciNet  Google Scholar 

  31. Soave, N., Tavares, H.: New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms. J. Differ. Equ. 261(1), 505–537 (2016)

    Article  Google Scholar 

  32. Terracini, S., Verzini, G.: Multipulse phases in \(k\)-mixtures of Bose–Einstein condensates. Arch. Ration. Mech. Anal. 194(3), 717–741 (2009)

    Article  MathSciNet  Google Scholar 

  33. Timmermans, E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998)

    Article  Google Scholar 

  34. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190(1), 83–106 (2008)

    Article  MathSciNet  Google Scholar 

  35. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure. Appl. Anal. 11, 1003–1011 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Xuexiu Zhong thanks Zhijie Chen for the valuable discussions when preparing the paper. The authors also wound like to thank the referees for many valuable comments helping to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexiu Zhong.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC (11801581), Guangdong NSFC (2018A030310082).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsch, T., Zhong, X. & Zou, W. Normalized solutions for a coupled Schrödinger system. Math. Ann. 380, 1713–1740 (2021). https://doi.org/10.1007/s00208-020-02000-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02000-w

Mathematics Subject Classification

Navigation