Skip to main content
Log in

Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For a positive proportion of primes p and q, we prove that \({\mathbb {Z}}\) is Diophantine in the ring of integers of \({\mathbb {Q}}(\root 3 \of {p},\sqrt{-q})\). This provides a new and explicit infinite family of number fields K such that Hilbert’s tenth problem for \(O_K\) is unsolvable. Our methods use Iwasawa theory and congruences of Heegner points in order to obtain suitable rank stability properties for elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A pseudo isomorphism is a morphism with finite kernel and cokernel.

References

  1. Abbes, A., Ullmo, E.: À propos de la conjecture de Manin pour les courbes elliptiques modulaires. Compos. Math. 103(3), 269–286 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Agashe, A., Ribet, K., Stein, W.: The Manin constant. Pure Appl. Math. Q. 2(2), 617–636 (2006). (Special Issue: In honor of John H. Coates. Part 2)

    MathSciNet  MATH  Google Scholar 

  3. Birch, B.J.: Diophantine Analysis and Modular Functions. Algebraic Geometry (International Colloquium, Tata Institute of Fundamental Research, Bombay, 1968), pp. 35–42. Oxford University Press, London (1969)

    Google Scholar 

  4. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over \({\mathbb{Q}}\): wild \(3\)-adic exercises. J. Am. Math. Soc. 14(4), 843–939 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Bump, D., Friedberg, S., Hoffstein, J.: Eisenstein series on the metaplectic group and non-vanishing theorems for automorphic \(L\)-functions and their derivatives. Ann. Math. 131, 53–127 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Cornelissen, G., Pheidas, T., Zahidi, K.: Division-ample sets and the Diophantine problem for rings of integers. J. Théor. Nombres Bordeaux 17(3), 727–735 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential diophantine equations. Ann. Math. 2(74), 425–436 (1961)

    MathSciNet  MATH  Google Scholar 

  8. Denef, J.: Diophantine sets over algebraic integer rings. II. Trans. Am. Math. Soc. 257(1), 227–236 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Denef, J., Lipshitz, L.: Diophantine sets over some rings of algebraic integers. J. Lond. Math. Soc. (2) 18(3), 385–391 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Dokchitser, T.: Ranks of elliptic curves in cubic extensions. Acta Arith. 126(4), 357–360 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Dokchitser, V.: Root numbers of non-abelian twists of elliptic curves. With an appendix by Tom Fisher. Proc. Lond. Math. Soc. (3) 91(2), 300–324 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Dokchitser, T., Dokchitser, V.: Computations in non-commutative Iwasawa theory. With an appendix by J. Coates and R. Sujatha. Proc. Lond. Math. Soc. (3) 1(94), 211–272 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Dokchitser, T., Dokchitser, V.: On the Birch–Swinnerton–Dyer quotients modulo squares. Ann. Math. (2) 172(1), 567–596 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Gross, B., Zagier, D.: Heegner points and derivatives of \(L\)-series. Invent. Math. 84, 225–320 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Greenberg, R.: Iwasawa theory for elliptic curves. Iwasawa theory for elliptic curves. In: Viola, C. (ed.) Arithmetic Theory of Elliptic Curves. Lecture Notes in Mathematics, vol. 1716. Springer, Berlin (1999)

    Google Scholar 

  16. Hachimori, Y., Matsuno, K.: An analogue of Kida’s formula for the Selmer groups of elliptic curves. J. Algebraic Geom. 8(3), 581–601 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Heegner, K.: Diophantische analysis und modulfunktionen. Math. Z. 56, 227–253 (1952)

    MathSciNet  MATH  Google Scholar 

  18. Kolyvagin, V.: Euler systems. In: Cartier, P. (ed.) The Grothendieck Festschrift, vol. II, Progress in Mathematics, vol. 87, pp. 435–483. Birkhäuser, Basel (1990)

    Google Scholar 

  19. Kriz, D., Li, C.: Goldfeld’s conjecture and congruences between Heegner points. Forum Math. Sigma 7, E15 (2019)

    MathSciNet  MATH  Google Scholar 

  20. The LMFDB Collaboration: The L-functions and Modular Forms Database. http://www.lmfdb.org

  21. Matiyasevich, Y.: The Diophantineness of enumerable sets. (Russian) Dokl. Akad. Nauk SSSR 191, 279–282 (1970)

    MathSciNet  Google Scholar 

  22. Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18, 183–266 (1972)

    MathSciNet  MATH  Google Scholar 

  23. Mazur, B.: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129–162 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Mazur, B., Rubin, K.: Ranks of twists of elliptic curves and Hilbert’s tenth problem. Invent. Math. 181(3), 541–575 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Mazur, B., Rubin, K.: Diophantine stability. With an appendix by Michael Larsen. Am. J. Math. 140(3), 571–616 (2018)

    Google Scholar 

  26. Monsky, P.: Mock Heegner points and congruent numbers. Math. Z. 204(1), 45–67 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Murty, M.R., Murty, V.K.: Mean values of derivatives of modular \(L\)-series. Ann. Math. 133, 447–475 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Murty, M.R., Pasten, H.: Elliptic curves, L-functions, and Hilbert’s tenth problem. J. Number Theory 182, 1–18 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d’Iwasawa. (French) [Arithmetic of elliptic curves and Iwasawa theory] Mém. Soc. Math. France (N.S.). 17, pp. 130 (1984)

  30. Pheidas, T.: Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Am. Math. Soc. 104(2), 611–620 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Poonen, B.: Using Elliptic Curves of Rank One Towards the Undecidability of Hilbert’s Tenth Problem Over Rings of Algebraic Integers. Algorithmic Number Theory (Sydney, 2002). Lecture Notes in Computer Science, vol. 2369, pp. 33–42. Springer, Berlin (2002)

    MATH  Google Scholar 

  32. Schneider, P.: Iwasawa L-functions of varieties over algebraic number fields. A first approach. Invent. Math. 71(2), 251–293 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, New York (1994)

    Google Scholar 

  34. Shapiro, H., Shlapentokh, A.: Diophantine relationships between algebraic number fields. Commun. Pure Appl. Math. 42(8), 1113–1122 (1989)

    MathSciNet  MATH  Google Scholar 

  35. Shlapentokh, A.: Extension of Hilbert’s tenth problem to some algebraic number fields. Commun. Pure Appl. Math. 42(7), 939–962 (1989)

    MathSciNet  MATH  Google Scholar 

  36. Shlapentokh, A.: Elliptic curves retaining their rank in finite extensions and Hilbert’s tenth problem for rings of algebraic numbers. Trans. Am. Math. Soc. 360(7), 3541–3555 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Videla, C.: Sobre el décimo problema de Hilbert. Atas da Xa Escola de Algebra, Vitoria, ES, Brasil. Colecao Atas 16 Sociedade Brasileira de Matematica, 95–108 (1989)

  39. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Natalia Garcia-Fritz was supported by the FONDECYT Iniciación en Investigación Grant 11170192, and the CONICYT PAI Grant 79170039. Hector Pasten was supported by FONDECYT Regular Grant 1190442. We gratefully acknowledge the hospitality of the IMJ-PRG in Paris during our visit in February 2019, where the final ideas of the project were developed. We heartily thank Loïc Merel for this invitation and for several enlightening discussions on elliptic curves. The final technical details of this work were worked out and presented in May 2019 at the AIM meeting “Definability and Decidability problems in Number Theory”. We thank the AIM for their hospitality and the participants for their valuable feedback. Specially, we thank Karl Rubin and Alexandra Shlapentokh for their interest and technical remarks. Comments by Matias Alvarado, Chao Li, and Barry Mazur on an earlier version of this manuscript are gratefully acknowledged. We also thank the anonymous referee for several valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Garcia-Fritz.

Additional information

Communicated by Wei Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

N. G.-F. was supported by the FONDECYT Iniciación en Investigación Grant 11170192, and the CONICYT PAI Grant 79170039. H.P. was supported by FONDECYT Regular Grant 1190442.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Fritz, N., Pasten, H. Towards Hilbert’s tenth problem for rings of integers through Iwasawa theory and Heegner points. Math. Ann. 377, 989–1013 (2020). https://doi.org/10.1007/s00208-020-01991-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-01991-w

Mathematics Subject Classification

Navigation