Skip to main content
Log in

Tropical varieties for exponential sums

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2021

This article has been updated

Abstract

We study the complexity of approximating complex zero sets of certain n-variate exponential sums. We show that the real part, R, of such a zero set can be approximated by the \((n-1)\)-dimensional skeleton, T, of a polyhedral subdivision of \(\mathbb {R}^n\). In particular, we give an explicit upper bound on the Hausdorff distance: \(\Delta (R,T) =O\left( t^{3.5}/\delta \right) \), where t and \(\delta \) are respectively the number of terms and the minimal spacing of the frequencies of g. On the side of computational complexity, we show that even the \(n=2\) case of the membership problem for R is undecidable in the Blum-Shub-Smale model over \(\mathbb {R}\), whereas membership and distance queries for our polyhedral approximation T can be decided in polynomial-time for any fixed n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. [44] provides an excellent survey on undecidability, in the classical Turing model, geared toward non-experts in complexity theory.

  2. A preliminary version of Theorem 1.10 appeared in our December 2014 Math ArXiV preprint 1412.4423 and was presented by the first author at MEGA 2015 (June 16, University of Trento).

References

  1. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential problems. In: Proceedings of ISSAC ’08 (International Symposium on Symbolic and Algebraic Computation, July 22–23, 2008, Hagenberg, Austria), pp. 215–222, ACM Press

  2. Ahlfors, L.: Complex Analysis, 3rd edn. McGraw-Hill Science, New York (1979)

    MATH  Google Scholar 

  3. Alessandrini, D.: Logarithmic limit sets of real semi-algebraic sets. Adv. Geom. 13(1), 155–190 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Amini, O., Baker, M., Faber, X.: Tropical and non-archimedean geometry. In: Proceedings of Bellairs Workshop on Tropical and Non-Archimedean Geometry (May 6–13, 2011, Barbados), Contemporary Mathematics, vol. 605, AMS Press (2013)

  5. Arora, S., Barak, B.: Computational Complexity. A Modern Approach. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Avendaño, M., Kogan, R., Nisse, M., Rojas, J.M.: Metric estimates and membership complexity for archimedean amoebae and tropical hypersurfaces. J. Complex. 46, 45–65 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line, Mathematical Surveys and Monographs, 159. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  8. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Berlin (1998)

    MATH  Google Scholar 

  9. Borwein, J.M., Borwein, P.B.: On the complexity of familiar functions and numbers. SIAM Rev. 30(4), 589–601 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Boyd, S., Kim, S.-J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67–127 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Chiang, M.: Geometric Programming for Communication Systems. Now Publishers Inc., Massachusetts (2005)

    MATH  Google Scholar 

  12. De Loera, J.A., Rambau, J., Santos, F.: Triangulations, Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)

    MATH  Google Scholar 

  13. Duffin, R.J., Peterson, E.L., Zener, C.: Geometric Programming. Wiley, New York (1967)

    MATH  Google Scholar 

  14. Einsiedler, M., Kapranov, M.M., Lind, D.: Non-archimedean amoebas and tropical varieties. Journal für die reine und angewandte Mathematik (Crelles Journal) 2006(601), 139–157 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Favorov, S.Y.: Holomorphic almost periodic functions in tube domains and their amoebas. Comput. Methods Funct. Theory 1(2), 403–415 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Forsberg, M.: Amoebas and Laurent Series, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, (1998)

  17. Forsgård, J.: On the multivariate Fujiwara bound for exponential sums, Math ArXiV preprint arXiv:1612.03738. (Submitted for publication)

  18. Forsythe, K., Hatke, G.: A Polynomial Rooting Algorithm for Direction Finding, preprint, MIT Lincoln Laboratories (1995)

  19. Fujiwara, M.: Über die obere Schranke des absoluten Betrags der Wurzeln einer algebraischen Gleichung. Tôhoku Math. J. 10:167–171

  20. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  21. Gritzmann, P.: Grundlagen der Mathematischen Optimierung: Diskrete Strukturen, Komplexitätstheorie, Konvexitätstheorie, Lineare Optimierung, Simplex-Algorithmus, Dualität. Springer Vieweg, Berlin (2013)

    MATH  Google Scholar 

  22. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1993)

    MATH  Google Scholar 

  23. Grünbaum, B.: Convex Polytopes, Wiley-Interscience, London, 1967; 2nd ed. (edited by Ziegler, G.), Graduate Texts in Mathematics, vol. 221, Springer (2003)

  24. Habegger, P., Pila, J.: \(o\)-minimality and certain atypical intersections, Annales scientifiques de l’ENS 49, fascicule 4, pp. 813–858 (2016)

  25. Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. Journal de Mathématiques Pures et Appliquées, 4ième série 9, 171–216 (1893)

    MATH  Google Scholar 

  26. Hadari, A.: The spectra of polynomial equations with varying exponents. Topol. Appl. 212, 105–121 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Hwang, H.K., Aliyazicioglu, Z., Grice, M., Yakovlev, A.: Direction of arrival estimation using a Root-MUSIC algorithm. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2008, Vol. II, IMECS 2008, 19–21 March, Hong Kong (2008)

  28. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry, Oberwolfach Seminars, vol. 35, 2nd edn. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  29. Ja, B.: On Zeros of Exponential Sums. Sov. Math. Dokl. 23(2), 347–351 (1981)

    Google Scholar 

  30. Khovanskiĭ, A.G.: Fewnomials. AMS Press, Providence (1991)

    MATH  Google Scholar 

  31. Kirby, J., Zilber, B.: Exponentially closed fields and the conjecture on intersections with tori. Ann. Pure Appl. Log. 165(11), 1680–1706 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Michel, L.: Lapidus and Machiel van Frankenhuysen, Fractal geometry, complex dimensions and zeta functions: Geometry and Spectra of Fractal Strings. In: Springer Monographs in Mathematics. Springer, New York (2006)

  33. Macintyre, A., Wilkie, A.: On the decidability of the real exponential field. In: Kreiseliana: About and Around Georg Kreisel, pp. 441–467, A. K. Peters (1996)

  34. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies in Mathematics, vol. 161. AMS Press, New York (2015)

    MATH  Google Scholar 

  35. McMullen, C.T.: Polynomial invariants for fibered \(3\)-manifolds and Teichmuller geodesics for foliations. Ann. Sci. Ecole Norm. Super 33(4), 519–560 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Milman, V.D., Pajor, A.: Entropy and asymptotic geometry of non-symmetric convex bodies. Adv. Math. 152(2), 314–335 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Milman, V.D., Szarek, S.J.: A Geometric Lemma and Duality of Entropy Numbers. In: Geometric Aspects of Functional Analysis, pp. 191–222, Lecture Notes in Math., 1745. Springer, Berlin (2000)

  38. Mora, G., Sepulcre, J.M., Vidal, T.: On the existence of exponential polynomials with prefixed gaps. Bull. Lond. Math. Soc. 45, 1148–1162 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Moreno, C.J.: The zeros of exponential polynomials (I). Compos. Math. 26, 69–78 (1973)

    MathSciNet  MATH  Google Scholar 

  40. Christos, H.: Papadimitriou, Computational Complexity. Addison-Wesley, Boston (1995)

    Google Scholar 

  41. Passare, M., Rullgård, H.: Amoebas, Monge-Ampàre measures, and triangulations of the Newton polytope. Duke Math. J. 121(3), 481–507 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16(3), 543–556 (2009)

    MathSciNet  MATH  Google Scholar 

  43. David, A.: Plaisted, new NP-hard and NP-complete polynomial and integer divisibility problems. Theor. Comput. Sci. 31(1–2), 125–138 (1984)

    MATH  Google Scholar 

  44. Poonen, B.: Undecidable Problems: A Sampler, Interpreting Gödel: Critical Essays. In: Kennedy, J. (ed). Cambridge University Press, Cambridge, pp. 211–241 (2014)

  45. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials, London Mathematical Society Monographs, vol. 26. Oxford Science Publications, Oxford (2002)

    Google Scholar 

  46. Richardson, D.: Roots of real exponential functions. J. Lond. Math. Soc. (2) 28, 46–56 (1983)

    MathSciNet  Google Scholar 

  47. Rojas, J.M., Rusek, K.: \(\cal{A}\)-discriminants for complex exponents and counting real isotopy types, submitted for publication. Also available as Math ArXiV preprint arXiv:1612.03458

  48. Rullgård, H.: Topics in geometry, analysis and inverse problems, doctoral dissertation, Department of Mathematics, Stockholm University, Sweden, (2003). Downloadable from http://su.diva-portal.org/smash/record.jsf?pid=diva2:190169

  49. Scanlon, T., Yasufuku, Y.: Exponential-polynomial equations and dynamical return sets. Int. Math. Res. Not. 16, 4357–4367 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  51. Silipo, J.: Amibes de sommes d’exponentielles. Can. J. Math. 60(1), 222–240 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Silipo, J.: The Ronkin number of an exponential sum. Math. Nachr. 285(8–9), 1117–1129 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning, Boston (2012)

    MATH  Google Scholar 

  54. Soprunova, E.: Exponential Gelfond–Khovanskii formula in dimension one. Proc. Am. Math. Soc. 136(1), 239–245 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Theobald, T.: Computing amoebas. Exp. Math. 11(4), 513–526 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Theobald, T., de Wolff, T.: Approximating amoebas and coamoebas by sums of squares. Math. Comp. 84(291), 455–473 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Vempala, S.: The Random Projection Method, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 65. AMS Press, New York (2004)

    Google Scholar 

  58. Vershynin, R.: High Dimensional Probability: An Introduction with Applications to Data Science. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  59. Viro, O.Y.: Dequantization of real algebraic geometry on a logarithmic paper. In: Proceedings of the 3rd European Congress of Mathematicians, Birkhäuser, Progress in Math, 201, pp. 135–146 (2001)

  60. Voorhoeve, M.: On the oscillation of exponential polynomials. Math. Z. 151, 277–294 (1976)

    MathSciNet  MATH  Google Scholar 

  61. Voorhoeve, M.: Zeros of Exponential Polynomials, Ph.D. thesis, University of Leiden (1977)

  62. Voorhoeve, M.: A generalization of Descartes’ rule. J. Lond. Math. Soc. 20(3), 446–456 (1979)

    MathSciNet  MATH  Google Scholar 

  63. Wilkie, A.J.: Model completeness results for expansions of the ordered field of real numbers by restricted pfaffian functions and the exponential functions. J. Am. Math. Soc. 9, 1051–1094 (1996)

    MathSciNet  MATH  Google Scholar 

  64. Ziegler, G.M.: Lectures on Polytopes, Graduate Texts in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  65. Zilber, B.: Exponential sum equations and the Schanuel conjecture. J. Lond. Math. Soc. (2) 65, 27–44 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Timo de Wolff for pointing out Silipo’s work [51]. We also thank Pascal Koiran, Gregorio Malajovich, Jiří Matoušek, and Klaus Meer for useful discussions. Special thanks go to our referee for valuable commentary that significantly improved our paper.

In closing, we would like to remember our friend and colleague Joel Zinn: He was admired at Texas A&M (and far beyond) for his wisdom, warmth, humor, and kindness. He is sorely missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Maurice Rojas.

Additional information

Communicated by Ngaiming Mok.

In memory of Joel Zinn (March 16, 1946–December 5, 2018), beloved friend and brilliant colleague.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A.E. was partially supported by NSF Grant CCF-1409020, and Einstein Foundation, Berlin. J.M.R. was partially supported by NSF Grant CCF-1409020, and LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by ANR. G.P. was partially supported by BSF Grant 2010288 and NSF CAREER Grant DMS-1151711.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergür, A.A., Paouris, G. & Rojas, J.M. Tropical varieties for exponential sums. Math. Ann. 377, 863–882 (2020). https://doi.org/10.1007/s00208-019-01808-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01808-5

Navigation