Skip to main content
Log in

La filtration canonique des \({{\mathcal {O}}}\)-modules p-divisibles

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this article we associate to G, a truncated p-divisible \({{\mathcal {O}}}\)-module of given signature, where \({{\mathcal {O}}}\) is a finite unramified extension of \(\mathbb {Z}_p\), a filtration of G by sub-\({{\mathcal {O}}}\)-modules under the condition that its Hasse \(\mu \)-invariant is smaller than an explicit bound. This filtration generalise the one given when G is \(\mu \)-ordinary. The construction of the filtration relies on a precise study of the crystalline periods of a p-divisible \({{\mathcal {O}}}\)-module. We then apply this result to families of such groups, in particular to strict neighbourhoods of the \(\mu \)-ordinary locus inside some PEL Shimura varieties.

Résumé

Dans cet article, à G un groupe p-divisible tronqué muni d’une action d’une extension finie non ramifiée \({{\mathcal {O}}}\) de \(\mathbb {Z}_p\), et de signature donnée, on associe sous une condition explicite sur son \(\mu \)-invariant de Hasse, une filtration de G par des sous-\({{\mathcal {O}}}\)-modules qui étend la filtration canonique lorsque G est \(\mu \)-ordinaire. La construction se fait en étudiant les périodes cristallines des groupes p-divisibles avec action de \({{\mathcal {O}}}\). On applique ensuite cela aux familles de tels groupes, en particulier des voisinages stricts du lieu \(\mu \)-ordinaire dans des variétés de Shimura PEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. voir [19] Définition C.1.2. On dit aussi modulaire cf. [37] definition 5.6.

References

  1. Andreatta, F., Gasbarri, C.: The canonical subgroup for families of abelian varieties. Compos. Math. 143(3), 566–602 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. André, Y.: Slope filtrations. Conflu. Math. 1(1), 1–85 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bijakowski, S., Hernandez, V.: Groupes \(p\)-divisibles avec condition de Pappas–Rapoport et invariants de hasse. Journal de l’École polytechnique—Mathématiques 4(2017), 935–972 (2016). https://doi.org/10.5802/jep.60

    MathSciNet  MATH  Google Scholar 

  4. Bijakowski, S.: Partial Hasse invariants, partial degrees and the canonical subgroup. Can. J. Math. 70(4), 742–772 (2018)

  5. Bijakowski, S.: Refined partial Hasse invariants and the canonical filtration. Math. Res. Lett. (2016). arXiv preprint arXiv:1612.05078 (to appear)

  6. Bijakowski, S.: Formes modulaires surconvergentes, ramification et classicité. Ann. Inst. Fourier (Grenoble) 67(6), 2463–2518 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boxer, G.: Torsion in the coherent cohomology of Shimura varieties and Galois representations (2015). arXiv preprint arXiv:1507.05922

  8. Bijakowski, S., Pilloni, V., Stroh, B.: Classicité de formes modulaires surconvergentes. Ann. Math. (2) 183(3), 975–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brasca, R.: \(p\)-adic modular forms of non-integral weight over Shimura curves. Compos. Math. 149(1), 32–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, M.: Périodes entieres de groupes \(p\)-divisibles sur une base générale. Bull. Soc. Math. France 143(1), 1–33 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colemanet, R., Mazur, B.: The eigencurve. In: Galois Representations in Arithmetic Algebraic Geometry. Proceedings of the Symposium, Durham, UK, July 9–18, 1996, pp. 1–113. Cambridge University Press, Cambridge (1998)

  12. Faltings, G.: Crystalline cohomology and \(p\)-adic Galois-representations. In: Algebraic Analysis, Geometry, and Number Theory: Proceedings of the JAMI Inaugural Conference, held at Baltimore, MD, USA, May 16-19, 1988, pp. 25–80. Johns Hopkins University Press, Baltimore (1989)

  13. Faltings, G.: Integral crystalline cohomology over very ramified valuation rings. J. Am. Math. Soc. 12(1), 117–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faltings, G.: Group schemes with strict \(\cal{O}\)-action. Mosc. Math. J. 2(2), 249–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fargues, L.: Théorie de la réduction pour les groupes \(p\)-divisibles (preprint)

  16. Fargues, L.: La filtration de Harder-Narasimhan des schémas en groupes finis et plats. J. Reine Angew. Math. 645, 1–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fargues, L.: La filtration canonique des points de torsion des groupes \(p\)-divisibles. Ann. Sci. Éc. Norm. Supér. (4) 44(6), 905–961 (2011). (With collaboration of Yichao Tian)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fargues, L.: Quelques resultats et conjectures concernant la courbe. In: De la géométrie algébrique aux formes automorphes (I). Une collection d’articles en l’honneur du soixantième anniversaire de Gérard Laumon, pp. 325–374. Société Mathématique de France (SMF), Paris (2015)

  19. Fargues, L., Genestieret, A., Lafforgue, V.: L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  20. Fontaine, J.-M.: Groupes \(p\)-divisibles sur les corps locaux. Société Mathématique de France, Paris. Astérisque, no. 47–48 (1977)

  21. Goldring, W., Koskivirta, J.-S.: Strata Hasse invariants, Hecke algebras and Galois representations (2015). arXiv preprint arXiv:1507.05032

  22. Goldring, W., Nicole, M.-H.: The \(\mu \)-ordinary Hasse invariant of unitary Shimura varieties. J. Reine Angew. Math. 728, 137–151 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Hattori, S.: Canonical subgroups via Breuil-Kisin modules for \(p=2\). J. Number Theory 137, 142–159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernandez, V.: Invariants de hasse \(\mu \)-ordinaires. Journal de l’institut Fourier (2015). arXiv preprint arXiv:1608.06176 (to appear)

  25. Hernandez, V.: Families of Picard modular forms and an application to the Bloch–Kato conjecture (2017). arXiv preprint arXiv:1711.03196

  26. Illusie, L.: Complexe cotangent et déformations. I. (The cotangent complex and deformations. I.). Lecture Notes in Mathematics, vol. 239. Springer, Berlin. XV, DM 26.00 (1971)

  27. Kassaei, P.L.: \(\mathfrak{p}\)-adic modular forms over Shimura curves over totally real fields. Compos. Math. 140(2), 359–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Katz, N.M.: \(p\)-adic properties of modular schemes and modular forms. Modular functions of one variable III. In: Proceedings of internet. Summer School, Univ. Antwerp 1972, Lecture Notes in Mathematics, vol. 350, pp. 69–190 (1973)

  29. Kottwitz, R.E.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 5(2), 373–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Koskivirta, J.-S., Wedhorn, T.: Generalized \(\mu \)-ordinary Hasse invariants. J. Algebra 502, 98–119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lau, E.: Dieudonné theory over semiperfect rings. (2016). arXiv preprint arXiv:1603.07831

  32. Moonen, B.: Serre–Tate theory for moduli spaces of PEL type. Ann. Sci. Éc. Norm. Supér. (4) 37(2), 223–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mantovan, E., Viehmann, E.: On the Hodge–Newton filtration for \(p\)-divisible \({\cal{O}}\)-modules. Math. Z. 266(1), 193–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raynaud, M.: Schémas en groupes de type \((p,\)...\(, p) \). Bulletin de la société mathématique de France 102, 241–280 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rapoport, M., Richartz, M.: On the classification and specialization of \(F\)-isocrystals with additional structure. Compos. Math. 103(2), 153–181 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Scholze, P.: On torsion in the cohomology of locally symmetric varieties. Ann. Math. (2) 182(3), 945–1066 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, X.: On the Hodge–Newton filtration for \(p\)-divisible groups with additional structures. Int. Math. Res. Not. 2014(13), 3582–3631 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Scholze, P., Weinstein, J.: Moduli of \(p\)-divisible groups. Camb. J. Math. 1(2), 145–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Viehmann, E., Wedhorn, T.: Ekedahl–Oort and Newton strata for Shimura varieties of PEL type. Math. Ann. 356(4), 1493–1550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wedhorn, T.: Ordinariness in good reductions of Shimura varieties of PEL-type. Ann. Sci. École Norm. Sup. (4) 32(5), 575–618 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wedhorn, T.: The dimension of Oort strata of Shimura varieties of PEL-type. In: Faber, C., van der Geer, G., Oort, F. (eds.) Moduli of Abelian Varieties. Progress in Mathematics, vol. 195, pp. 441–471. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  42. Zink, T.: The display of a formal \(p\)-divisible group. In: Cohomologies \(p\)-adiques et applications arithmétiques (I), pp. 127–248. Société Mathématique de France, Paris (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Hernandez.

Additional information

Communicated by Toby Gee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendice A. Quelques calculs

Appendice A. Quelques calculs

Lemme A.1

Soit p un nombre premier, et \(n,f \in \mathbb {N}^*\). Alors on a l’égalité,

$$\begin{aligned} \frac{p^{(n-1)f}-1}{p^f-1}\frac{1}{2p^{n-1}f} + 2 \frac{p^{nf}-1}{p^f-1}\frac{1}{2p^{n-1}f} - \frac{1}{f} \leqslant 1 \end{aligned}$$

Démonstration

Cela revient à l’équation,

$$\begin{aligned} p^{(n-1)f} - 1 + 2(p^{nf}-1) - \frac{f+1}{f}2p^{(n-1)f}(p^f-1) \leqslant 0, \end{aligned}$$

donc,

$$\begin{aligned} 2p^{nf}\left( \frac{f+1}{f}-1\right) - p^{(n-1)f}\left( 1 + 2\frac{f+1}{f}\right) + 3 \geqslant 0, \end{aligned}$$

c’est à dire,

$$\begin{aligned} p^{(n-1)f}\left( \frac{2p^f - 3f-1}{f}\right) + 3 \geqslant 0, \end{aligned}$$

mais comme \(2p^f \geqslant 3f+1\), on a bien la majoration voulue.

Proposition A.2

(Bijakowski [6] proposition 1.25) Soit \(D,C \subset G[p^n]\) deux sous-\({{\mathcal {O}}}\)-modules de \({{\mathcal {O}}}\)-hauteurs respectives \(d \leqslant c\). Supposons que

$$\begin{aligned} \deg D + \deg C > \sum _{\tau '} \left( \min (np_{\tau '},d) + \min (np_{\tau '},c)\right) - |\{\tau ' : d-1\leqslant np_{\tau '} \leqslant c\}|, \end{aligned}$$

alors \(D \subset C\).

Démonstration

Notons \(h = {{\,\mathrm{ht}\,}}_{{\mathcal {O}}}(D\cap C)\). La \({{\mathcal {O}}}\)-hauteur de \(D+C\) est alors \(d + c - h \geqslant h\). On a alors,

$$\begin{aligned}&\deg (D+C) \leqslant \sum _{\tau '} \min (np_{\tau '},d + c - h), \quad \text {et}\quad \deg (D\cap C)\\&\quad \leqslant \sum _{\tau '} \min (np_{\tau '},h). \end{aligned}$$

On peut alors écrire,

$$\begin{aligned}&\deg D + \deg C \leqslant \deg (D+C) + \deg (D \cap C) \leqslant \sum _{\tau ' \in A} 2np_{\tau '}\\&\quad + \sum _{\tau '\in B} \left( np_{\tau '} + h\right) + \sum _{\tau '\in C} \left( c + d\right) , \end{aligned}$$

\(A = \{ \tau ' : np_{\tau '}< h\}, B = \{ \tau ' : h \leqslant np_{\tau '} < d + c - h\},\) et \(C = \{ \tau ' : np_{\tau '} \geqslant d + c - h\}\). Mais si \(D \not \subset C\), alors \(h \leqslant d - 1\), et on en déduit donc,

$$\begin{aligned} \deg D + \deg C \leqslant \sum _{\tau '} \left( \min (np_{\tau '},d) + \min (np_{\tau '},c)\right) - |\{\tau ' : d-1 \leqslant np_{\tau '} \leqslant c \}|. \end{aligned}$$

Ce qui contredit l’hypothèse de l’énoncé. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, V. La filtration canonique des \({{\mathcal {O}}}\)-modules p-divisibles. Math. Ann. 375, 17–92 (2019). https://doi.org/10.1007/s00208-018-1789-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1789-2

Navigation