Skip to main content
Log in

Convexity of complements of tropical varieties, and approximations of currents

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The goal of this note is to affirm a local version of conjecture of Nisse–Sottile [19] on higher convexity of complements of tropical varieties, while providing a family of counter-examples for the global Nisse–Sottle conjecture in any codimension and dimension higher than one. Moreover, it is shown that, surprisingly, this family also provides a family of counter-examples for the generalized Hodge conjecture for positive currents in these dimensions, and gives rise to further approximability obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Throughout this article, by Hausdorff limit, we mean Hausdorff limit with respect to compact subsets of \(\mathbb {R}^n\).

References

  1. Adiprasito, Karim., Björner, Andres.: Filtered geometric lattices and Lefschetz Section Theorems over the tropical semiring. arXiv:1401.7301, Jan (2014)

  2. Adiprasito, Karim., Huh, June., Katz, Eric.: Hodge theory for combinatorial geometries. arXiv:1511.02888, November (2015)

  3. Adiprasito, K.A., Sanyal, R.: Relative Stanley-Reisner theory and upper bound theorems for Minkowski sums. Publ. Math., Inst. Hautes Étud. Sci. 124, 99–163 (2016). (English).

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreotti, A., Grauert, H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193–259 (1962)

    Article  MATH  Google Scholar 

  5. Aumann, Georg: On a topological characterization of compact convex point sets. Ann. Math. 37(2), 443–447 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babaee, Farhad.: Complex tropical currents, Ph.D. thesis, Departments of Mathematics, Universities of Bordeanx and Padova, (2014)

  7. Babaee, F., Huh, J.: A tropical approach to a generalized Hodge conjecture for positive currents. Duke Math. J. 166(14), 2749–2813 (2017). (MR 3707289 )

    Article  MathSciNet  MATH  Google Scholar 

  8. Gil, J.I.B., Sombra, M.: Sombra, Martín: When do the recession cones of a polyhedral complex form a fan? Discrete Comput. Geom. 46(4), 789–798 (2011). (MR 2846179 (2012j:14070))

    Article  MathSciNet  MATH  Google Scholar 

  9. Bushueva, N.A., Tsikh, A.K.: On amoebas of algebraic sets of higher codimensions. Tr. Mat. Inst. Steklova 279, 59–71 (2012). (no. Analiticheskie i Geometricheskie Voprosy Kompleksnogo Analiza, MR 3086757 )

    MathSciNet  MATH  Google Scholar 

  10. Demailly, J.-P.: Complex analytic and differential geometry, Free e-book. http://www.fourier.ujf-grenoble.fr/~demailly/books.html. Accessed 14 July 2018

  11. Demailly, J.-P.: Courants positifs extrêmaux et conjecture de Hodge. Invent. Math. 69(3), 347–374 (1982). (MR 679762 (84f:32007))

    Article  MathSciNet  MATH  Google Scholar 

  12. Demailly, J.-P.: Analytic methods in algebraic geometry. In: Surveys of modern mathematics, vol. 1, International Press, Higher Education Press, Somerville, MA, Beijing (2012) (MR 2978333)

  13. Diederich, Klas, Fornaess, John Erik: Smoothing \(q\)-convex functions and vanishing theorems. Invent. Math 82(2), 291–305 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fornaess, John Erik, Sibony, Nessim: Oka’s inequality for currents and applications. Math. Ann. 301(3), 399–419 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36(2), 335–353 (1997). (MR 1415592 (97h:14070) )

    Article  MathSciNet  MATH  Google Scholar 

  16. Gromov, M.: Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano 61, 9–123 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henriques, A.: An analogue of convexity for complements of amoebas of varieties of higher codimension, an answer to a question asked by B. Sturmfels. Adv. Geom 4(1), 61–73 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mikhalkin G.: Amoebas of algebraic varieties and tropical geometry. In: Donaldson, S., Eliashberg, Y., Gromov, M. (eds.) Different faces of geometry. International mathematical series, vol. 3. Springer, Boston, MA, pp. 257–300 (2004)

  19. Nisse, M., Sottile, F.: Higher convexity for complements of tropical varieties. Math. Ann 365(1–2), 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rashkovskii, A.: A remark on amoebas in higher codimensions. In: Analysis and Mathematical Physics, Trends Math., Birkhäuser, Basel, pp. 465–471, (2009) (MR 2724627 (2012a:32010))

Download references

Acknowledgements

The authors thank the referees for the fruitful comments. We thank the CRM Ennio de Giorgi for its hospitality that enabled much of this work. Additionally, we are grateful to Emanuele Delucchi, Omid Amini, Romain Dujardin, Charles Favre, and Pierre Schapira for the encouraging discussions, and their support, and we are thankful to Nessim Sibony for the communications and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Adiprasito.

Additional information

Communicated by Jean-Yves Welschinger.

Karim Adiprasito is supported by ERC StG 716424—CASe and ISF Grant 1050/16. Farhad Babaee is supported by the SNSF:PP00P2 150552/1 Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiprasito, K., Babaee, F. Convexity of complements of tropical varieties, and approximations of currents. Math. Ann. 373, 237–251 (2019). https://doi.org/10.1007/s00208-018-1728-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1728-2

Mathematics Subject Classification

Navigation