Skip to main content

Advertisement

Log in

Existence and non-existence of maximizers for the Moser–Trudinger type inequalities under inhomogeneous constraints

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and non-existence of maximizers for the Moser–Trudinger type inequalities in \(\mathbb {R}^N\) of the form

$$\begin{aligned} D_{N,\alpha }(a,b):= \sup _{u\in W^{1,N}(\mathbb {R}^N),\,\Vert \nabla u\Vert _{L^N(\mathbb {R}^N)}^a+\Vert u\Vert _{L^N(\mathbb {R}^N)}^b=1} \int _{\mathbb {R}^N}\Phi _N\left( \alpha |u|^{N'}\right) dx. \end{aligned}$$

Here \(N\ge 2, N'=\frac{N}{N-1}, a,b>0, \alpha \in (0,\alpha _N]\) and \(\Phi _N(t):=e^t-\sum _{j=0}^{N-2}\frac{t^j}{j!}\) where \(\alpha _N:= N \omega _{N-1}^{1/(N-1)}\) and \(\omega _{N-1}\) denotes the surface area of the unit ball in \({\mathbb {R}}^{N}\). We show the existence of the threshold \(\alpha _*= \alpha _*(a,b,N) \in [0,\alpha _N]\) such that \(D_{N,\alpha }(a,b)\) is not attained if \(\alpha \in (0,\alpha _*)\) and is attained if \( \alpha \in (\alpha _*, \alpha _N)\). We also provide the conditions on (ab) in order that the inequality \(\alpha _*< \alpha _N\) holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: A scale-invariant form of Trudinger–Moser inequality and its best exponent. Proc. Am. Math. Soc. 1102, 148–153 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Beckner, W.: Estimates on Moser embedding. Potential Anal. 20, 345–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byeon, J., Jeanjean, L., Tanaka, K.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Comm. Partial Differ. Equ. 33, 1113–1136 (2008)

    Article  MATH  Google Scholar 

  5. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R}^2\). Comm. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MATH  Google Scholar 

  6. Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Cassani, D., Sani, F., Tarsi, C.: Equivalent Moser type inequalities in \(\mathbb{R}^2\) and the zero mass case. J. Funct. Anal. 267, 4236–4263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence (2003)

    Google Scholar 

  9. Do Ó, J.M.: \(N\)-Laplacian equations in \(\mathbb{R}^N\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do, Ó.J.M., Sani, F., Tarsi, C.: Vanishing-concentration-compactness alternative for the Trudinger–Moser inequality in \(\mathbb{R}^N\). Commun. Contemp. Math. 1650036, 27 (2016)

    MATH  Google Scholar 

  11. Flucher, M.: Extremal functions for the Trudinger–Moser inequality in \(2\) dimensions. Comm. Math. Helv. 67, 471–479 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishiwata, M.: Existence and nonexistence of maximizers for variational problems associated with Trudinger–Moser type inequalities in \(\mathbb{R}^N\). Math. Ann. 351, 781–804 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishiwata, M., Nakamura, M., Wadade, H.: On the sharp constant for the weighted Trudinger–Moser type inequality of the scaling invariant form. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 297–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ishiwata, M., Wadade, H.: On the effect of equivalent constraints on a maximizing problem associated with the Sobolev type embeddings in \(\mathbb{R}^N\). Math. Ann. 364(3–4), 1043–1068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozono, H., Ogawa, T., Sohr, H.: Asymptotic behaviour in Lr for weak solutions of the Navier–Stokes equations in exterior domains. Manuscr. Math. 74, 253–275 (1992)

    Article  MATH  Google Scholar 

  16. Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality. Indiana Univ. Math. J. 55, 1951–1974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lam, N.: Maximizers for the singular Trudinger–Moser inequalities in the subcritical cases. Proc. Am. Math. Soc. 145, 4885–4892 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lam, N., Lu, G.: Sharp singular Adams inequalities in high order Sobolev spaces. Methods Appl. Anal. 19, 243–266 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger–Moser–Adams inequalities, to appear in Rev. Mat, Iberoam (2017)

  20. Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R}^n\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Yang, Y.: Extremal functions for singular Trudinger–Moser inequalities in the entire Euclidean space. J. Differ. Equ. arXiv:1612.08247 (in press)

  22. Lin, K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  24. Nagayasu, S., Wadade, H.: Characterization of the critical Sobolev space on the optimal singularity at the origin. J. Funct. Anal. 258, 3725–3757 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ogawa, T.: A proof of Trudinger’s inequality and its application to nonlinear Schrodinger equation. Nonlinear Anal. 14, 765–769 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ogawa, T., Ozawa, T.: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrodinger mixed problem. J. Math. Anal. Appl. 155, 531–540 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ozawa, T.: Characterization of Trudinger’s inequality. J. Inequal. Appl. 1, 369–374 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pohozaev, S. I.: The Sobolev embedding in the case \(pl=n\). In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section, pp. 158–170, Moskov. Energetics Inst., Moscow (1965)

  30. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R}^2\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Struwe, M.: Critical points of embeddings of \(W^{1, N}_0\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425–464 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  34. Weinstein, M. I.: Nonlinear Schrodinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1982/1983)

  35. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dok. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP16K17623. The authors would like to express their hearty thanks to the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemitsu Wadade.

Additional information

Communicated by Y. Giga.

A Proof of \(N^2/(\alpha _N B_{GN}) < N\)

A Proof of \(N^2/(\alpha _N B_{GN}) < N\)

The purpose of this appendix is to prove

$$\begin{aligned} \frac{N^2}{\alpha _N B_{GN}} < N \end{aligned}$$
(A.1)

for all \(N \ge 2\). Notice that when \(N =2\), (A.1) is equivalent to \(2/ B_{GN} < \alpha _2 = 4 \pi \) and this is already known (see [2, 12, 34]). However, we also provide a simple proof of this fact below.

We first rewrite (A.1). Using the Schwarz rearrangement, it follows that

$$\begin{aligned} B_{GN} = \sup _{u \in W^{1,N}_\mathrm{r} ({\mathbb {R}}^{N}) {\setminus } \{0\} } \frac{ \Vert u \Vert _{NN'}^{NN'} }{ \Vert u \Vert _{N}^N \Vert \nabla u \Vert _{N}^{NN'-N} }, \end{aligned}$$

where \(W^{1,N}_\mathrm{r}({\mathbb {R}}^{N})\) is a set consisting of radial functions in \(W^{1,N}({\mathbb {R}}^{N})\). For \( u \in W^{1,N}_\mathrm{r}({\mathbb {R}}^{N})\), one has

$$\begin{aligned} \Vert \nabla u \Vert _N^N = \omega _{N-1} \int _0^\infty r^{N-1} |u'(r) |^{N} d r, \quad \Vert u \Vert _p^p = \omega _{N-1} \int _0^\infty r^{N-1} |u(r)|^p dr, \end{aligned}$$

which implies

$$\begin{aligned} B_{GN} = \omega _{N-1}^{-1/(N-1)} \sup _{u \in W^{1,N}_\mathrm{r} ({\mathbb {R}}^{N}) {\setminus } \{0\} } \frac{\int _0^\infty r^{N-1}|u(r)|^{NN'} dr }{\int _0^\infty r^{N-1} |u(r)|^N dr \left( \int _0^\infty r^{N-1} |u'(r)|^N dr \right) ^{1/(N-1)} }. \end{aligned}$$

Recalling \(\alpha _N = N \omega _{N-1}^{1/(N-1)}\), we see that (A.1) is equivalent to

$$\begin{aligned} 1 - \inf _{ u \in W^{1,N}_\mathrm{r} ({\mathbb {R}}^{N}) {\setminus } \{0\} } \frac{ \int _0^\infty r^{N-1} |u(r)|^N dr \left( \int _0^\infty r^{N-1} |u'(r)|^N dr \right) ^{1/(N-1)} }{ \int _0^\infty r^{N-1}|u(r)|^{NN'} dr } >0. \end{aligned}$$
(A.2)

Therefore, instead of (A.1), we shall prove (A.2) for every \(N \ge 2\).

When \(N=2\), we can check (A.2) by setting \(u(r) := \max \{ 0 , (1-r)^3 \}\). In fact, since

$$\begin{aligned} \begin{aligned}&\int _0^1 r (1-r)^6 dr = B(2,7) = \frac{\Gamma (2) \Gamma (7)}{\Gamma (9)}, \quad 9 \int _0^1 r (1-r)^4 dr = 9 B(2,5) = 9 \frac{\Gamma (2) \Gamma (5)}{\Gamma (7)},\\&\int _0^1 r (1-r)^{12} dr = B(2,13) = \frac{\Gamma (2)\Gamma (13)}{\Gamma (15)} \end{aligned} \end{aligned}$$

where B(xy) and \(\Gamma (z)\) are the beta function and the gamma function, we see

$$\begin{aligned} \begin{aligned}&\frac{ \int _0^\infty r^{N-1} |u(r)|^N dr \left( \int _0^\infty r^{N-1} |u'(r)|^N dr \right) ^{1/(N-1)} }{ \int _0^\infty r^{N-1}|u(r)|^{NN'} dr }\\&\quad = \frac{\Gamma (7)}{\Gamma (9)} 9 \frac{\Gamma (5)}{\Gamma (7)} \frac{\Gamma (15)}{\Gamma (13)} = 9 \frac{1}{8\cdot 7 \cdot 6 \cdot 5} 14 \cdot 13 = \frac{39}{40} < 1. \end{aligned} \end{aligned}$$

For the case \(N \ge 3\), we choose \(u(r) = e^{-r}\) as a test function. Observe that

$$\begin{aligned} \begin{aligned}&\int _0^\infty r^{N-1} e^{-Nr} dr = \frac{\Gamma (N)}{N^N} = \int _0^\infty r^{N-1} | (e^{-r})' |^N d r, \\&\int _0^\infty r^{N-1} e^{-N^2 r/ (N-1)} dr = \left( \frac{N-1}{N^2} \right) ^N \Gamma (N). \end{aligned} \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} \begin{aligned}&\frac{ \int _0^\infty r^{N-1} |u(r)|^N dr \left( \int _0^\infty r^{N-1} |u'(r)|^N dr \right) ^{1/(N-1)} }{ \int _0^\infty r^{N-1}|u(r)|^{NN'} dr}\\&\quad = \Gamma (N)^{1/(N-1)} (N-1)^{-N} N^{(N^2-2N)/(N-1)} =: C_N. \end{aligned} \end{aligned}$$
(A.3)

Thus to prove (A.2), it suffices to show \(C_N^{N-1} < 1\) for \(N\ge 3\), which is equivalent to \((N-1) \log (C_N) < 0\).

From

$$\begin{aligned} C_{N}^{N-1} = (N-1) ! N^{N^2 - 2 N} (N-1)^{-N^2+N}, \end{aligned}$$

it follows that

$$\begin{aligned} \begin{aligned} \log (C_N^{N-1})&= \sum _{k=1}^{N-1} \log k + (N^2 - 2N) \log N - (N^2-N) \log (N-1)\\&=\sum _{k=1}^{N-1} \log k + (N^2 - N) \left( \log N - \log (N-1) \right) - N \log N\\&=\left\{ \sum _{k=1}^{N-1} \log k - N \left( \log N - 1\right) \right\} + \left\{ - N + N(N-1) \log \left( 1 + \frac{1}{N-1} \right) \right\} \\&=: d_N+e_N \end{aligned} \end{aligned}$$

Claim 1

For each\(N \ge 3\), there holds

$$\begin{aligned} e_N < - \frac{1}{2}. \end{aligned}$$

In fact, by \(\log (1+x) = \sum _{k=1}^\infty (-1)^{k-1} x^k / k\) for \( 0 \le x <1\) and \(N \ge 3\), we have

$$\begin{aligned} \begin{aligned}&\log \left( 1 + \frac{1}{N-1} \right) \\&\quad = \frac{1}{N-1} - \frac{1}{2(N-1)^2} \\&\qquad + \frac{1}{3(N-1)^3} + \sum _{k=2}^\infty \left( -\frac{1}{2k} \frac{1}{(N-1)^{2k}} + \frac{1}{2k+1} \frac{1}{(N-1)^{2k+1}} \right) \\&\quad < \frac{1}{N-1} - \frac{1}{2(N-1)^2} + \frac{1}{3(N-1)^3}. \end{aligned} \end{aligned}$$

Hence, one sees that

$$\begin{aligned} \begin{aligned} e_N&< - N + N (N-1) \left\{ \frac{1}{N-1} - \frac{1}{2(N-1)^2} + \frac{1}{3(N-1)^3} \right\} \\&= - \frac{1}{2} \frac{N}{N-1} + \frac{N}{3(N-1)^2} = -\frac{1}{2} + \frac{3-N}{6(N-1)^2} \le -\frac{1}{2}. \end{aligned} \end{aligned}$$

Claim 2

There holds \(d_{N+1}< d_{N}\)for every\(N \ge 3\).

Since

$$\begin{aligned} \begin{aligned} d_{N} - d_{N+1}&= \sum _{k=1}^{N-1} \log k - N \left( \log N - 1 \right) - \sum _{k=1}^{N} \log k + (N+1) \left\{ \log (N+1) - 1 \right\} \\&= (N+1) \left\{ \log (N+1) - \log N \right\} - 1, \end{aligned} \end{aligned}$$

set \(f(x) := (x+1) \{ \log (x+1) - \log (x) \} - 1\). Noting that

$$\begin{aligned} \begin{aligned} f'(x)&= \log (x+1) - \log (x) + 1 - \frac{x+1}{x}\\&= \log (x+1) - \log (x) - \frac{1}{x} = \log (1+x^{-1}) - \frac{1}{x},\\ f''(x)&= \frac{1}{x+1} - \frac{1}{x} + \frac{1}{x^2} = \frac{1}{x^2(x+1)} > 0, \end{aligned} \end{aligned}$$

and that \(f'(x) \rightarrow 0\) as \(x \rightarrow \infty \), we infer that \(f'(x) < 0\) for all \(x \ge 1\). Since

$$\begin{aligned} f(x)= & {} (x+1) \log ( 1 + x^{-1} ) - 1 = (x+1) \left( x^{-1} - \frac{x^{-2}}{2} + O(x^{-3}) \right) -1 \\= & {} \frac{x^{-1}}{2} + O(x^{-2}), \end{aligned}$$

we have \(f(x) \rightarrow 0\) as \(x \rightarrow \infty \), and \(f(x) > 0\) for all \(x \ge 1\). Thus \(f(N) > 0\) and Claim 2 holds.

Claim 3

There holds \(\log (C_N^{N-1}) < 0\)for every\(N \ge 3\).

By Claims 1–2, it is enough to prove \(d_3 < 1/2\). Since \(d_3 = \log 2 -3 ( \log 3 - 1 )\), we see that \(d_3<\frac{1}{2}\) is equivalent to \(e^5<\frac{729}{4}\). Moreover, we observe that

$$\begin{aligned} e^5< (2.8)^5 = 172.10368 < 182.25 = \frac{729}{4}. \end{aligned}$$

Hence, Claim 3 is proved.

From (A.2), (A.3) and Claim 3, we get the desired inequality \(N^2 / (\alpha _N B_{GN}) < N\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikoma, N., Ishiwata, M. & Wadade, H. Existence and non-existence of maximizers for the Moser–Trudinger type inequalities under inhomogeneous constraints. Math. Ann. 373, 831–851 (2019). https://doi.org/10.1007/s00208-018-1709-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1709-5

Keyword

Mathematics Subject Classification

Navigation