Mathematische Annalen

, Volume 370, Issue 1–2, pp 331–380 | Cite as

Finite subgroups of Ham and Symp

  • Ignasi Mundet i RieraEmail author


Let \((X,\omega )\) be a compact symplectic manifold of dimension 2n and let \({\text {Ham}}(X,\omega )\) be its group of Hamiltonian diffeomorphisms. We prove the existence of a constant C, depending on X but not on \(\omega \), such that any finite subgroup \(G\subset {\text {Ham}}(X,\omega )\) has an abelian subgroup \(A\subseteq G\) satisfying \([G:A]\le C\), and A can be generated by n elements or fewer. If \(b_1(X)=0\) we prove an analogous statement for the entire group of symplectomorphisms of \((X,\omega )\). If \(b_1(X)\ne 0\) we prove the existence of a constant \(C'\) depending only on X such that any finite subgroup \(G\subset {\text {Symp}}(X,\omega )\) has a subgroup \(N\subseteq G\) which is either abelian or 2-step nilpotent and which satisfies \([G:N]\le C'\). These results are deduced from the classification of the finite simple groups, the topological rigidity of hamiltonian loops, and the following theorem, which we prove in this paper. Let E be a complex vector bundle over a compact, connected, smooth and oriented manifold M; suppose that the real rank of E is equal to the dimension of M, and that \(\langle e(E),[M]\rangle \ne 0\), where e(E) is the Euler class of E; then there exists a constant \(C''\) such that, for any prime p and any finite p-group G acting on E by vector bundle automorphisms preserving an almost complex structure on M, there is a subgroup \(G_0\subseteq G\) satisfying \(M^{G_0}\ne \emptyset \) and \([G:G_0]\le C''\).

Mathematics Subject Classification

57S17 53D05 



I wish to thank A. Jaikin, A. Turull and C. Sáez for useful comments. Special thanks to A. Jaikin for providing the proof of Lemma 4.5, which is much shorter and more efficient than the original one. Many thanks finally to the referee for a detailed and very useful report, for a number of corrections and suggestions to improve the paper, and for providing an alternative and more direct proof of Theorem 6.1.


  1. 1.
    Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Birkar, C.: Singularities of linear systems and boundedness of Fano varieties. Preprint. arXiv:1609.05543
  3. 3.
    Borel, A.: Seminar on Transformation Groups, Ann. of Math. Studies, vol. 46. Princeton University Press, Princeton (1960)Google Scholar
  4. 4.
    Bredon, G.: Topology and Geometry, Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1993)Google Scholar
  5. 5.
    Bredon, G.E.: Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46. Academic, London (1972)zbMATHGoogle Scholar
  6. 6.
    Browder, W.: Pulling back fixed points. Invent. Math. 87, 331–342 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Browder, W.: Actions of elementary abelian \(p\)-groups. Topology 27(4), 459–472 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Browder, W.: Fixed points of actions of \(p\)-groups on projective varieties. Math. Scand. 66(2), 185–196 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982)Google Scholar
  10. 10.
    Cohen, R.L., Klein, J.R.: Umkehr maps. Homol. Homot. Appl. 11(1), 17–33 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Conner, P.E., Floyd, E.E.: Differentiable Periodic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band, vol. 33. Academic, Springer, New York, Berlin (1964)Google Scholar
  12. 12.
    Csikós, B., Pyber, L., Szabó, E.: Diffeomorphism groups of compact 4-manifolds are not always Jordan. Preprint. arXiv:1411.7524
  13. 13.
    Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. AMS Chelsea Publishing, Providence (2006). (reprint of the 1962 original)CrossRefzbMATHGoogle Scholar
  14. 14.
    Guillemin, V., Ginzburg, V.L., Karshon, Y.: Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, vol. 98. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  15. 15.
    Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. With an Appendix Containing Two Reprints by Henri Cartan. Mathematics Past and Present. Springer, Berlin (1999)zbMATHGoogle Scholar
  16. 16.
    Hopf, H.: Zur topologie der abbildungen von mannigfaltigkeiten. Math. Ann. 102, 562–623 (1930)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jordan, C.: Mémoire sur les équations différentielles linéaires à intégrale algébrique. J. Reine Angew. Math. 84, 89–215 (1878)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kȩdra, J., Kotschick, D., Morita, S.: Crossed flux homomorphisms and vanishing theorems for flux groups. Geom. Funct. Anal. 16(6), 1246–1273 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lalonde, F., McDuff, D., Polterovich, L.: Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135, 369–385 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mann, L.N., Su, J.C.: Actions of elementary p-groups on manifolds. Trans. Am. Math. Soc. 106, 115–126 (1963)MathSciNetzbMATHGoogle Scholar
  21. 21.
    McDuff, D.: Quantum homology of fibrations over \(S^2\). Int. J. Math. 11, 665–721 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn. Oxford University Press, Oxford (1995). (1998)zbMATHGoogle Scholar
  23. 23.
    Meng, S., Zhang, D.-Q.: Jordan property for non-linear algebraic groups and projective varieties. Preprint. arXiv:1507.02230v1
  24. 24.
    Minkowski, H.: Zur Theorie der positiven quadratischen Formen. J. Reine Angew. Math. 101, 196–202 (1887). (See also Collected Works. I, 212–218, Chelsea Publishing Company, 1967)MathSciNetGoogle Scholar
  25. 25.
    Mundet i Riera, I.: Jordan’s theorem for the diffeomorphism group of some manifolds. Proc. Am. Math. Soc. 138, 2253–2262 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mundet i Riera, I.: Finite group actions on homology spheres and manifolds with nonzero Euler characteristic. Preprint. arXiv:1403.0383v2
  27. 27.
    Mundet i Riera, I.: Non Jordan groups of diffeomorphisms and actions of compact Lie groups on manifolds. Transformation Groups. Preprint (to appear). arXiv:1412.6964
  28. 28.
    Mundet i Riera, I.: Finite groups acting symplectically on \(T^2\times S^2\). Proc. Am. Math. Soc. 369(6), 4457–4483 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mundet i Riera, I., Turull, A.: Boosting an analogue of Jordan’s theorem for finite groups. Adv. Math. 272, 820–836 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Polterovich, L.: Floer homology, dynamics and groups, Morse theoretic methods in nonlinear analysis and in symplectic topology, 417–438, NATO Sci. Ser. II Math. Phys. Chem., 217. Springer, Dordrecht (2006)Google Scholar
  31. 31.
    Popov, V.L.: On the Makar–Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties. In: Peter Russell’s Festschrift, Proceedings of the Conference on Affine Algebraic Geometry Held in Professor Russell’s honour, 1–5 June 2009, McGill University, Montreal., Volume 54 of Centre de Recherches Mathématiques CRM Proc. and Lect. Notes, pp. 289–311 (2011)Google Scholar
  32. 32.
    Popov, V.L.: Finite subgroups of diffeomorphism groups. Preprint. arXiv:1310.6548
  33. 33.
    Popov, V.L.: Jordan groups and automorphism groups of algebraic varieties. In: Cheltsov, I., et al. (eds.) Automorphisms in Birational and Affine Geometry, Springer Proceedings in Mathematics and Statistics, vol. 79, pp. 185–213. Springer, Berlin (2014)Google Scholar
  34. 34.
    Prokhorov, Y., Shramov, C.: Jordan property for Cremona groups. Am. J. Math. 138(2), 403–418 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Prokhorov, Y., Shramov, C.: Jordan property for groups of birational selfmaps. Compos. Math. 150(12), 2054–2072 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Quillen, D.: The spectrum of an equivariant cohomology ring. I, II. Ann. Math. (2) 94, 549–572 (1971). (ibid. (2) 94 (1971), 573–602)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Robinson, D.J.S.: A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, 2nd edn. Springer, New York (1996)CrossRefGoogle Scholar
  38. 38.
    Roseblade, J.E.: On groups in which every subgroup is subnormal. J. Algebra 2, 402–412 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sambale, B.: Exponent and \(p\)-rank of finite \(p\)-groups and applications. Arch. Math. (Basel) 103(1), 11–20 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Serre, J.-P.: Bounds for the Orders of the Finite Subgroups of \(G(k)\), Group Representation Theory. EPFL Press, Lausanne (2007)zbMATHGoogle Scholar
  41. 41.
    Serre, J.-P.: A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field. Moscow Math. J. 9, 193–208 (2009)MathSciNetGoogle Scholar
  42. 42.
    tom Dieck, T.: Transformation Groups, De Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter & Co., Berlin (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Departament d’Àlgebra i Geometria, Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations