Advertisement

Mathematische Annalen

, Volume 370, Issue 1–2, pp 1–37 | Cite as

General analytic characterization of gaugeability for Feynman-Kac functionals

  • Daehong Kim
  • Kazuhiro KuwaeEmail author
Article

Abstract

We give a general analytic characterization of the gaugeability for generalized Feynman-Kac functionals involving continous additive functionals locally of zero energy generalizing the earlier work on the analytic characterization of the gaugeability of Feynman-Kac functional for absorbing Brownian motion on a bounded domain given by Aizenman-Simon (Commun Pure Appl Math 35(2), 209–273, 1982). The result also extends the previous known results on the analytic characterization of the gaugeability for generalized Feynman-Kac functionals in the framework of symmetric Markov processes satisfying irreducibility condition and absolute continuity condition.

Mathematics Subject Classification

Primary 31C25 60J45 60J57 Secondary 35J10 60J35 60J25 

Notes

Acknowledgements

The authors would like to thank Professor Masayoshi Takeda for his valuable comments to the draft of this paper.

References

  1. 1.
    Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure. Appl. Math. 35(2), 209–273 (1982)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, Z.-Q.: Gaugeability and conditional gaugeability. Trans. Am. Math. Soc. 354(11), 4639–4679 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, Z.-Q.: Analytic characterization of conditional gaugeability for non-local Feynman-Kac transforms. J. Funct. Anal. 202(1), 226–246 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Z.-Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.-S.: Stochastic calculus for symmetric Markov processes. Ann. Probab. 36(3), 931–970 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Z.-Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.-S.: Perturbation of symmetric Markov processes. Probab. Theory Relat. Fields 140(1–2), 239–275 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, Z.-Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.-S.: On general perturbations of symmetric Markov processes. J. Math. Pures et Appliquées 92(4), 363–374 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  8. 8.
    Chen, Z.-Q., Kim, P., Kumagai, T.: Global heat kernel estimates for symmetric jump processes. Trans. Am. Math. Soc. 363(9), 5021–5055 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, Z.-Q., Kim, P., Kumagai, T.: Global heat Kernel estimates for symmetric jump processes. Trans. Am. Math. Soc. 367(10), 7515 (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Z.-Q., Kim, P., Song, R.: Global heat Kernel estimates for relativistic stable processes in exterior open sets. J. Funct. Anal. 263(2), 448–475 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Z.-Q., Kim, P., Song, R.: Global heat Kernel estimates for relativistic stable processes in half-space-like open sets. Potential Anal. 36(2), 235–261 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, Z.-Q., Kumagai, T.: Heat Kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140(1–2), 277–317 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chen, Z.-Q., Song, R.: Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201(1), 262–281 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chung, K.L.: Doubly-Feller process with multiplicative functional, Seminar on stochastic processes, 1985 (Gainesville, Fla., 1985), 63–78, Progr. Probab. Statist., vol. 12, Birkhäuser Boston, Boston (1986)Google Scholar
  15. 15.
    Chung, K.L.: Greenian bounds for Markov processes. Potential Anal. 1(1), 83–92 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 312. Springer, Berlin (1995)Google Scholar
  17. 17.
    De Leva, G., Kim, D., Kuwae, K.: \(L^p\)-independence of spectral bounds of Feynman-Kac semigroups by continuous additive functionals. J. Funct. Anal. 259(3), 690–730 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feller, W.: The birth and death processes as diffusion processes. J. Math. Pures Appl. 38(9), 301–345 (1959)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, Second revised and extended edition. de Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (2011)Google Scholar
  20. 20.
    Fuglede, B.: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier (Grenoble) 21(fasc. 1), 123–169 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Herbst, I.W., Sloan, A.D.: Perturbation of translation invariant positivity preserving semigroups on \(L^2({\mathbb{R}}^n)\). Trans. Am. Math. Soc. 236, 325–360 (1978)MathSciNetzbMATHGoogle Scholar
  22. 22.
    He, S.W., Wang, J.G., Yan, J.A.: Semimartingale Theory and Stochastic Calculus. Science Press, Beijing (1992)zbMATHGoogle Scholar
  23. 23.
    Itô, K., Jr. McKean, H.P.: Diffusion processes and their sample paths, Second printing, corrected. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 125. Springer, Berlin (1974)Google Scholar
  24. 24.
    Kim, D., Kurniawaty, M., Kuwae, K.: A refinement of analytic characterizations of gaugeability for generalized Feynman-Kac functionals. Ill. J. Math. 59(3), 717–771 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kim, D., Kuwae, K.: Analytic characterizations of gaugeability for generalized Feynman-Kac functionals. Trans. Am. Math. Soc. http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2016-06702-1/ (2016)
  26. 26.
    Kim, D., Kuwae, K., Tawara, Y.: Large deviation principle for generalized Feynman-Kac functionals and its applications. Tohoku Math. J. 68(2), 161–197 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kurniawaty, M., Kuwae, K., Tsuchida, K.: On doubly Feller property of resolvent, preprint (2015) (to appear in Kyoto J. Math)Google Scholar
  28. 28.
    Kuwae, K., Takahashi, M.: Kato class measures of symmetric Markov processes under heat Kernel estimates. J. Funct. Anal. 250(1), 86–113 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer Universitext, Berlin (1992)CrossRefzbMATHGoogle Scholar
  30. 30.
    Ryznar, M.Ł.: Estimates of Green function for relativistic \(\alpha \)-stable process. Potential Anal. 17(1), 1–23 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Takeda, M.: Conditional gaugeability and subcriticality of generalized Schrödinger operators. J. Funct. Anal. 191(2), 343–376 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Takeda, M., Uemura, T.: Subcriticality and gaugeability for symmetric \(\alpha \)-stable processes. Forum Math. 16(4), 505–517 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhao, Z.: Green function for Schrödinger operator and conditioned Feynman-Kac gauge. J. Math. Anal. Appl. 116(2), 309–334 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhao, Z.: A probabilistic principle and generalized Schrödinger perturbation. J. Funct. Anal. 101(1), 162–176 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Engineering, Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  2. 2.Department of Applied Mathematics, Faculty of ScienceFukuoka UniversityFukuokaJapan

Personalised recommendations