Skip to main content
Log in

On the critical exponent of infinitely generated Veech groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove the existence of Veech groups having a critical exponent strictly greater than any elementary Fuchsian group (i.e. \({>}\frac{1}{2}\)) but strictly smaller than any lattice (i.e. \({<}1\)). More precisely, every affine covering Y of a primitive L-shaped Veech surface X ramified over the singularity and a non-periodic connection point \(P\in X\) has such a Veech group \({{\mathrm{SL}}}(Y)\). Hubert and Schmidt (Duke Math J 123, 49–69 2004) showed that these Veech groups are infinitely generated and of the first kind. We use a result of Roblin and Tapie (Monogr Enseign Math 43:61–92, 2013) which connects the critical exponent of \({{\mathrm{SL}}}(Y)\) with the Cheeger constant of the Schreier graph of \({{\mathrm{SL}}}(X)/{{\mathrm{Stab}}}_{{{\mathrm{SL}}}(X)}(P)\). The main task is to show that the Cheeger constant is strictly positive, i.e. the graph is non-amenable. In this context, we introduce a measure of the complexity of connection points that helps to simplify the graph to a forest for which non-amenability can be seen easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that \(\mathbb {H}=\mathbb {H}^2=\mathbb {H}^{1+1}\).

References

  1. Bartholdi, L.: Counting paths in graphs. Enseign. Math. 45(1–2), 83–131 (1999)

  2. Beardon, A.F.: The exponent of convergence of Poincaré series. Proc. Lond. Math. Soc. 3(3), 461–483 (1968)

    Article  MATH  Google Scholar 

  3. Beardon, A.F.: The Geometry of Discrete Groups, vol. 91. Springer, New York (1983)

  4. Bishop, C.J., Jones, P.W.: Hausdorff dimension and Kleinian groups. Acta Math. 179(1), 1–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brooks, R.: The bottom of the spectrum of a Riemannian covering. J. Reine Angew. Math. 357, 101–114 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Calta, K.: Veech surfaces and complete periodicity in genus two. J. Am. Math. Soc. 17(4), 871–908 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chavel, I.: Eigenvalues in Riemannian Geometry, vol. 115. Academic Press, New York (1984)

  8. Grigorchuk, R.I.: Symmetrical random walks on discrete groups. Multicompon. Random Syst. 6, 285–325 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Gutkin, E., Judge, C.: Affine mappings of translation surfaces: geometry and arithmetic. Duke Math. J. 103, 191–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hubert, P., Lelièvre, S.: Prime arithmetic Teichmüller discs in H(2)(2). Israel J. Math. 151(1), 281–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hubert, P., Schmidt, T.A.: An introduction to Veech surfaces. Handb. Dynam. Syst. 1, 501–526 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hubert, P., Schmidt, T.A.: Geometry of infinitely generated Veech groups. Conform. Geom. Dyn. 10, 1–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hubert, P., Schmidt, T.A.: Infinitely generated Veech groups. Duke Math. J. 123, 49–69 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katok, S.: Fuchsian Groups. University of Chicago Press, Chicago (1992)

  15. Masur, H.: Ergodic theory of translation surfaces. Handb. Dynam. Syst. 1, 527–547 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. McMullen, C.T.: Teichmüller curves in genus two: discriminant and spin. Math. Ann. 333, 87–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. McMullen, C.T.: Teichmüller curves in genus two: torsion divisors and ratios of sines. Invent. Math. 165, 651–672 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. McMullen, C.T.: Teichmüller geodesics of infinite complexity. Acta Math. 191, 191–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Möller, M.: Affine groups of at surfaces. In: Papadopoulos, A. (ed.) Handbook of Teichmüller Theory, vol. II. European Mathematical Society, UK, pp. 369–387 (2009)

  20. Möller, M.: Periodic points on Veech surfaces and the Mordell–Weil group over a Teichmüller curve. Invent. Math. 165, 633–649 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicholls, P.J.: The ergodic theory of discrete groups. In: London Mathematical Society Lecture Note Series, vol. 143. Cambridge University Press, Cambridge (1989)

  22. Paterson, A.L.T.: Amenability, vol. 29. AMS Bookstore, USA (2000)

  23. Patterson, S.J.: The exponent of convergence of Poincaré series. Monatshefte für Mathematik 82(4), 297–315 (1976)

    Article  MATH  Google Scholar 

  24. Patterson, S.J.: The limit set of a Fuchsian group. Acta Mathematica 136(1), 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roblin, T., Tapie, S.: Exposants critiques et moyennabilité. Monogr. Enseign. Math. 43, 61–92 (2013)

    MATH  Google Scholar 

  26. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Publications Mathématiques de l’IHÉS 50(1), 171–202 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tapie, S.: Graphes, moyennabilité et bas du spectre de variétés topologiquement infinies (2010). arXiv:1001.2501

  28. Veech, W.A.: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Inventiones Mathematicae 97(3), 553–583 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Verdière, Y.C.D.: Le trou spectral des graphes et leurs propriétés d’expansion. Séminaire de théorie spectrale et géométrie 12, 51–68 (1993)

    Article  MATH  Google Scholar 

  30. Woess, W.: Random walks on infinite graphs and groups. In: Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

Download references

Acknowledgments

This paper summarizes and augments the results of the author’s dissertation of the same title. He thanks the European Research Council ERC-StG 257137 for financial support as well as J. Cuno, P. Hubert, M. Möller, S. Tapie and J. Zachhuber for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Lehnert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehnert, R. On the critical exponent of infinitely generated Veech groups. Math. Ann. 368, 1017–1058 (2017). https://doi.org/10.1007/s00208-016-1462-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1462-6

Mathematics Subject Classification

Navigation