Skip to main content
Log in

Scattering in the energy space for the NLS with variable coefficients

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the NLS with variable coefficients in dimension \(n\ge 3\)

$$\begin{aligned} i \partial _t u - Lu +f(u)=0, \qquad Lv=\nabla ^{b}\cdot (a(x)\nabla ^{b}v)-c(x)v, \qquad \nabla ^{b}=\nabla +ib(x), \end{aligned}$$

on \(\mathbb {R}^{n}\) or more generally on an exterior domain with Dirichlet boundary conditions, for a gauge invariant, defocusing nonlinearity of power type \(f(u)\simeq |u|^{\gamma -1}u\). We assume that L is a small, long range perturbation of \(\Delta \), plus a potential with a large positive part. The first main result of the paper is a bilinear smoothing (interaction Morawetz) estimate for the solution. As an application, under the conditional assumption that Strichartz estimates are valid for the linear flow \(e^{itL}\), we prove global well posedness in the energy space for subcritical powers \(\gamma <1+\frac{4}{n-2}\), and scattering provided \(\gamma >1+\frac{4}{n}\). When the domain is \(\mathbb {R}^{n}\), by extending the Strichartz estimates due to Tataru (Am J Math 130(3):571–634, 2008), we prove that the conditional assumption is satisfied and deduce well posedness and scattering in the energy space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskin, D., Marzuola, J.L., Wunsch, J.: Strichartz estimates on exterior polygonal domains (2012). arXiv:1211.1211v3

  2. Blair, M.D., Smith, H.F., Sogge, C.D.: Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary. Math. Ann. 354(4), 1397–1430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cacciafesta, F.: Smoothing estimates for the variable coefficients Schrödinger equation with electromagnetic potentials. J. Math. Anal. Appl. 402(1), 286–296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cacciafesta, F., D’Ancona, P.: Weighted \(L^p\) estimates for powers of selfadjoint operators. Adv. Math. 229(1), 501–530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cacciafesta, F., D’Ancona, P., Luca’, R.: Helmholtz and dispersive equations with variable coefficients on exterior domains (2014). arXiv:1403.5288

  6. Cassano, B., Tarulli, M.: \(h^1\)-defocusing weakly coupled nls equations in low dimensions (2014). arXiv:1409.8416

  7. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences (2003)

  8. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \(\mathbb{R}^3\). Commun. Pure Appl. Math. 57(8), 987–1014 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colliander, J., Czubak, M., Lee, J.J.: Interaction Morawetz estimate for the magnetic Schrödinger equation and applications. Adv. Differ. Equ. 19(9–10), 805–832 (2014)

    MathSciNet  MATH  Google Scholar 

  10. D’Ancona, P., Fanelli, L.: \(L^p\)-boundedness of the wave operator for the one dimensional Schrödinger operator. Commun. Math. Phys. 268(2), 415–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Ancona, P., Fanelli, L.: Strichartz and smoothing estimates of dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33(4–6), 1082–1112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Ancona, P., Fanelli, L., Vega, L., Visciglia, N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258(10), 3227–3240 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. J. Funct. Anal. 227(1), 30–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdoğan, M.B., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Fanelli, L., Vega, L.: Magnetic virial identities, weak dispersion and Strichartz inequalities. Math. Ann. 344(2), 249–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. Journal de Mathématiques Pures et Appliquées. Neuvième Série 64(4), 363–401 (1985)

  18. Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T.: Wave operators and unitary equivalence. Pac. J. Math. 15, 171–180 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)

  21. Leinfelder, H., Simader, C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liskevich, V., Vogt, H., Voigt, J.: Gaussian bounds for propagators perturbed by potentials. J. Funct. Anal. 238(1), 245–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morawetz, C.S.: Time decay for the nonlinear Klein–Gordon equations. Proc. R. Soc. Ser. A 306, 291–296 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morawetz, C.S.: Decay of solutions of the exterior problem for the wave equation. Commun. Pure Appl. Math. 28, 229–264 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Neil, R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ouhabaz, E.M.: Gaussian upper bounds for heat kernels of second-order elliptic operators with complex coefficients on arbitrary domains. J. Oper. Theory 51(2), 335–360 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Ouhabaz, E.M.: Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

  28. Robbiano, L., Zuily, C.: Strichartz estimates for Schrödinger equations with variable coefficients. Mémoires de la Société Mathématique de France. Nouvelle Série 101–102, vi+208 (2005)

  29. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Staffilani, G., Tataru, D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7–8), 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32(7–9), 1281–1343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tataru, D.: Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Am. J. Math. 130(3), 571–634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Visciglia, N.: On the decay of solutions to a class of defocusing NLS. Math. Res. Lett. 16(5–6), 919–926 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups. J. Funct. Anal. 67, 167–205 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yajima, K.: The \(W^{k, p}\)-continuity of wave operators for schrödinger operators. III. Even-dimensional cases \(m\ge 4\). J. Math. Sci. Univ. Tokyo 2(2), 311–346 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Yajima, K.: \(L^p\)-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero D’Ancona.

Additional information

B. Cassano and P. D’Ancona were supported by the Italian project FIRB 2012 Dispersive Dynamics: Fourier Analysis and Calculus of Variations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassano, B., D’Ancona, P. Scattering in the energy space for the NLS with variable coefficients. Math. Ann. 366, 479–543 (2016). https://doi.org/10.1007/s00208-015-1335-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1335-4

Mathematics Subject Classification

Navigation