Skip to main content
Log in

A variational characterization of complex submanifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this note, we generalize our results in Arezzo and Sun (Reine Angew Math, doi:10.1515/crelle-2013-0097, 2012) to integer p-currents of any degree. We prove that if the mass of a current, as a functional of the ambient metric, has a critical or stable point in some special directions, then the current is complex. This holds for any dimension and codimension. We also study a natural functional on the space of currents representing a fixed homology class, closely related to the first derivative of the Mass in our new approach, detecting the deviation of a surface from being holomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, H.: Holomorphic chains and the support hypothesis conjecture. J. A.M.S. 10(1), 123–138 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Almgren F. J., Jr.: Jr. Almgren’s big regularity paper. Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ. pp. xvi+955. ISBN: 981-02-4108-9 (2000)

  3. Arezzo, C.: Minimal surfaces and deformations of holomorphic curves in Kähler-Einstein manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29(4), 473–481 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Arezzo, C., La Nave, G.: Minimal two spheres and Kahler-Einstein metrics on Fano manifolds. Adv. Math. 191, 209–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arezzo, C., Micallef, M.J.: Minimal surfaces in flat tori. Geom. Funct. Anal. 10(4), 679–701 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arezzo, C., Sun, J.: A variational characterization of \(J\)-holomorphic curves in symplectic manifolds. J. Reine Angew. Math. (Crelle’s Journal) (2012). doi:10.1515/crelle-2013-0097

  7. Borthwick, D., Uribe, A.: Nearly Kählerian embeddings of symplectic manifolds. Asian J. Math. 4, 599–620 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chern, S.S., Wolfson, J.: Minimal surfaces by moving frams. Am. J. Math. 105, 59–83 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Lellis C., Spadaro E.: Regularity of area minimizing currents I: gradient \(L^p\) estimates. arXiv:1306.1195 (2014)

  10. De Lellis C., Spadaro E.: Regularity of area minimizing currents II: center manifold. arXiv:1306.1191 (2013)

  11. De Lellis C., Spadaro E.: Regularity of area minimizing currents III: blow-up. arXiv:1306.1194 (2013)

  12. Donaldson, S.: Scalar curvature and projective embeddings I. J. Diff. Geom. 59, 479–522 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Federer H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, pp. xiv+676. Springer, New York (1969)

  14. Han, X., Li, J.: Symplectic critical surfaces in Kähler surfaces. J. Eur. Math. Soc. (JEMS) 12(2), 505–527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, X., Li, J.: The second variation of the functional \(L\) of symplectic critical surfaces in Khler surfaces. Commun. Math. Stat. 2(3–4), 311–330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han X., Li J., Sun J.: The deformation of symplectic critical surfaces in a Kähler surface-I. arXiv:1504.04138 (2015)

  17. Harvey, R., Shiffman, B.: A characterization of holomorphic chains. Ann. Math. 2(99), 553–587 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawson, H.B., Simons, J.: On stable currents and their application to global problems in real and complex geometry. Ann. Math. 2(98), 427–450 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Micallef, M.J., Wolfson, J.: Area minimizers in a K3 surface and holomorphicity. Geom. Funct. Anal. 16, 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Micallef, J., Wolfson, J.: The second variation of area of minimal surfaces in four-manifolds. Math. Ann. 295, 245–267 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon L.: Lectures on goemetric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, pp. vii+272 (1983)

  22. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Diff. Geom. 32(1), 99–130 (1990)

    MATH  Google Scholar 

  23. Tian, G., Riviere, T.: The singular set of 1–1 integral currents. Ann. Math. 169(3), 741–794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author wishes to thank C. De Lellis for pointing out reference [1] to our attention and him, G. De Philippis and E. Spadaro for many important discussions. He also wishes to thank CIRM-FBK (Trento) for providing an ideal working atmosphere. Part of the work are carried out when the second author was a postdoc at CIRM-FBK (Trento). He thanks the center for their hospitality. Claudio Arezzo was partially supported by FIRB Project RBFR08B2HY. The second author was supported by the National Natural Science Foundation of China, No. 11401440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Arezzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arezzo, C., Sun, J. A variational characterization of complex submanifolds. Math. Ann. 366, 249–277 (2016). https://doi.org/10.1007/s00208-015-1322-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1322-9

Navigation