Skip to main content
Log in

A characterization for solutions of the Monge-Kantorovich mass transport problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A measure theoretical approach is presented to study the solutions of the Monge-Kantorovich optimal mass transport problems. This approach together with Kantorovich duality provide an effective tool to answer a long standing question about the support of optimal plans for the mass transport problem involving general cost functions. We also establish a criterion for the uniqueness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis. Third edn. Springer, Berlin (2006)

  2. Ambrosio, L., Kirchheim, B., Pratelli, A.: Existence of optimal transport maps for crystalline norms. Duke Math. J. 125(2), 207–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Rigot, S.: Optimal mass transportation in the Heisenberg group. J Funct. Anal. 208(2), 261–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benes, V., Stepan, J.: The support of extremal measures with given marginals. Mathematical Statistics and Probability theory, A 33-41 (1987)

  5. Bertrand, J.: Existence and uniqueness of optimal maps on Alexandrov spaces. Adv. Math. 219(3), 838–851 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchini, S., Daneri, S.: On Sudakov’s type decomposition of transference plans with norm costs. arXiv:1311.1918 [math.CA]

  7. Bogachev, V.I.: Measure theory, vol. I. II. Springer-Verlag, Berlin (2007)

    Book  MATH  Google Scholar 

  8. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Feldman, M., McCann, R.J.: Constructing optimal maps for Monges transport problem as a limit of strictly convex costs. J. Am. Math. Soc. 15(1), 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caravenna, L.: A proof of Sudakov theorem with strictly convex norms. Math. Z. 268, 371–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Champion, T., De Pascale, L.: The Monge problem in \({\mathbb{R}}^d\). Duke Math. J. 157(3), 551–572 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chiappori, P.-A., McCann, R.J., Nesheim, L.P.: Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Econom. Theory 42, 317–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Douglas, R.D.: On extremal measures and subspace density. Michigan Math. J. 11, 243–246 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edgar, G.A.: Measurable weak sections. Illinois J. Math. 20(4), 630–646 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Gangbo, W.; Diifferential equations methods for the monge-kantorovich mass transfer problem. Curr. Develop. Math. 65-126 (1997)

  16. Figalli, A., Rifford, L.: Mass Transportation on Sub-Riemannian Manifolds. Geom. Funct. Anal. 20(1), 124–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gangbo, W.: Habilitation thesis. Université de Metz, 1995. 177 2 113–161 (1996)

  18. Gangbo, W., McCann, R.J.: Shape recognition via Wasserstein distance. Quart. Appl. Math. 58, 705–737 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Gigli, N.: Optimal maps in non branching spaces with Ricci curvature bounded from below. Geom. Funct. Anal. 22(4), 990–999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Graf, S.: Induced-homomorphisms and a parametrization of measurable sections via extremal preimage measures. Math. Ann. 247(1), 67–80 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hestir, K., Williams, S.C.: Supports of doubly stochastic measures. Bernouilli 1, 217–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kantorovich, L.: On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.), 37, 199-201 (1942)

  23. Kitagawa, J., Warren, M.: On the translocation of massesRegularity for the Optimal Transportation Problem with Euclidean Distance Squared Cost on the Embedded Sphere. SIAM J. Math. Anal. 44(4), 2871–2887 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levin, V.: Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem. Set-Valued Anal. 7(1), 7–32 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lindenstrauss, J.: A remark on doubly stochastic measures. Am. Math. Monthly 72, 379–382 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, Xi-Nan, Trudinger, Neil S., Wang, Xu-Jia: Regularity of Potential Functions of the Optimal Transportation Problem. Arch. Rational Mech. Anal. 177, 151–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCann, R.J., Pass, B., Warren, M.: Rectifiability of optimal transportation plans. Canad. J. Math. 64, 924–933 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. McCann, R.J., Sosio, M.: Holder continuity for optimal multivalued mappings. SIAM J. Math. Anal. 43, 1855–1871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moameni, A.: Supports of extremal doubly stochastic measures. Submitted (2014)

  30. Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la meme année, 666-704 (1781)

  31. Rachev, S.T., Rüschendorf, L.: Mass transportation problems. Vol. I. Theory. Probability and its Applications (New York). Springer-Verlag, New York (1998)

  32. K. P. S. Bhaskara Rao, M. Bhaskara Rao, A Remark on Nonatomic Measures. Ann. Math. Statist. 43(1), 369-370 (1972)

  33. Seethoff, T. L., Shiflett, R.C.: Doubly stochastic measures with prescribed support. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41(4) 283-288 (1977-1978)

  34. Sun, Y.: Isomorphisms for Convergence Structures. Adv. Math. 116(2), 322–355 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trudinger, N., Wang, X.J.: On the monge mass transfer problem. Calc. Var. PDE 13, 19–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Villani, C.: Optimal transport. Springer-Verlag, Old and new. Grundlehren der Mathematischen Wissenschaften (2009)

    Book  MATH  Google Scholar 

  37. von Weizsäcker, H., Winkler, G.: Integral representation in the set of solutions of a generalized moment problem. Math. Ann. 246 1, 23-32 (1979/80)

Download references

Acknowledgments

I would like to thank Professor Robert McCann for pointing out a critical issue on the statement of Theorem 1.3 in the first version of this Manuscript. I would also like to thank the reviewers for the careful reading of the manuscript and valuable comments that improved the clarity of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Moameni.

Additional information

Supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moameni, A. A characterization for solutions of the Monge-Kantorovich mass transport problem. Math. Ann. 365, 1279–1304 (2016). https://doi.org/10.1007/s00208-015-1312-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1312-y

Navigation