Skip to main content
Log in

Isometric actions on spheres with an orbifold quotient

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We classify representations of compact connected Lie groups whose induced action on the unit sphere has the orbit space isometric to a Riemannian orbifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.: The Riemannian geometry of orbit spaces. metrics, geodesics, integrable systems. Publ. Math. Debrecen 62, 1–30 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Alekseevsky, D., Kriegl, A., Losik, M., Michor, P.: Reflection groups on Riemannian manifolds. Ann. Mat. Pura Appl. 186, 25–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergmann, I.: Reducible polar representations. Manuscr. Math. 104(3), 309–324 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berndt, J., Console, S., Olmos, C.: Submanifolds and Holonomy, Research Notes in Mathematics, vol. 434. Chapman & Hall/CRC, Boca Raton (2003)

  5. Besse, A.: Manifolds All of Whose Geodesics are Closed, Ergeb. Math. Ihrer Grenz., vol. 93. Springer, Berlin (1978)

  6. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

  7. Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Am. Math. Soc. 288, 125–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, M.: Lectures on Orbifolds and Reflection Groups, pp. 63–93. Higher Education Press, Springer, Berlin (2010)

  9. Dearricott, O.: A \(7\)-manifold with positive curvtaure. Duke. Math. J. 158, 307–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eschenburg, J., Heintze, E.: On the classification of polar representations. Math. Z. 232, 391–398 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang, F., Grove, K.: Reflection groups in non-positive curvature (2014, E-print). arXiv:1403.5019 [math.DG]

  12. Fang, F., Grove, K., Thorbergsson, G.: Tits geometry and positive curvature (2012, E-print). arXiv:1205.6222v2 [math.DG]

  13. Gorodski, C.: Taut reducible representations of compact simple Lie groups. Ill. J. Math. 52, 121–143 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Gorodski, C., Lytchak, A.: On orbit spaces of representations of compact Lie groups. J. Reine Angew. Math. 691, 61–100 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Greenwald, S.J.: Diameters of spherical Alexandrov spaces and curvature one orbifolds. Indiana Univ. Math. J. 49(4), 1449–1479 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gromoll, D., Grove, K.: The low-dimensional metric foliations of Euclidean spheres. J. Differ. Geom. 28, 143–156 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Grove, K., Searle, C.: Global \(G\)-manifold reductions and resolutions. Ann. Global. Anal. Geom. 18, 437–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grove, K., Verdiani, L., Ziller, W.: An exotic \(T^1S^4\) with positive curvature. Geom. Funct. Anal. 21, 499–524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guillemin, V., Uribe, A., Wang, Z.: Geodesics on weighted projective spaces. Ann. Global Anal. Geom. 36, 205–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hang, F., Wang, X.: Rigidity theorems for compact manifolds with positive Ricci curvature. J. Geom. Anal. 19, 628–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kleiner, B., Lott, J.: Geometrization of three-dimensional orbifolds via Ricci flow (2011). arXiv:1101.3733

  22. Luna, D.: Adhérence d’orbite et invariants. Invent. Math. 29, 231–238 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luna, D., Richardson, R.W.: A generalization of the Chevalley restriction theorem. Duke Math. J. 46, 487–496 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lytchak, A.: Geometric resolution of singular Riemannian foliations. Geom. Dedicata 149, 379–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lytchak, A., Thorbergsson, G.: Curvature explosion in quotients and applications. J. Differ. Geom. 85, 117–140 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Lytchak, A., Wilking, B.: Riemannian foliations of spheres. To appear in Geom. Topol. arXiv:1309.7884 [math.DG] (2013, E-print)

  27. McGowan, J., Searle, C.: How tightly can you fold a sphere? Differ. Geom. Appl. 22, 81–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oniščik, A.L.: Inclusion relations between transitive compact transformation groups (Russian). Trudy Moskov. Mat. Obšč. 11, 199–242 (1962) [English transl., Am. Math. Soc. Transl. (2) 50, 5–58 (1966)]

  29. Palais, R.S., Terng, C.L.: Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics, vol. 1353. Springer, Berlin (1988)

  30. Petrunin, A.: Parallel transportation for Alexandrov space with curvature bounded below. Geom. Funct. Anal. 8, 123–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. Survey Differ. Geom. 11, 137–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Radeschi, M.: Low dimensional singular Riemannian foliations in spheres (2012, E-print). arXiv:1203.6113 [math.DG]

  33. Radeschi, M.: Clifford algebras and new singular Riemannian foliations in spheres. Geom. Funct. Anal. 24, 1660–1682 (2014)

    Article  MathSciNet  Google Scholar 

  34. Schwarz, G.W.: Lifting smooth homotopies of orbit spaces. I.H.E.S. Publ. Math. 51, 37–135 (1980)

  35. Straume, E.: On the invariant theory and geometry of compact linear groups of cohomogeneity \(\le 3\). Differ. Geom. Appl. 4, 1–23 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Straume, E.: Compact Connected Lie Transformation Groups on Spheres with Low Cohomogeneity, I, Mem. Amer. Math. Soc., vol. 569. American Mathematical Society, Providence (1996)

  37. Terng, C.L., Thorbergsson, G.: Taut immersions into complete Riemannian manifolds. In: Ryan, T.E., Chern, S.S. (eds.) Tight and Taut Submanifolds, Math. Sci. Res. Inst. Publ., vol. 32, pp. 181–228. Cambridge University Press, Cambridge (1997)

  38. Thorbergsson, G.: Isoparametric foliations and their buildings. Ann. Math. 2(133), 429–446 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Thorbergsson, G.: A Survey on Isoparametric Hypersurfaces and Their Generalizations, Handbook of Differential Geometry, vol. I, chap. 10. Elsevier Science, Amsterdam (2000)

  40. Wiesendorf, S.: Taut submanifolds and foliations. J. Differ. Geom. 96(3), 457–505 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Wilking, B.: Index parity of closed geodesics and rigidity of Hopf fibrations. Invent. Math. 148, 281–295 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wilking, B.: Torus actions on manifolds of positive sectional curvature. Acta Math. 191, 259–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wilking, B.: Positively curved manifolds with symmetry. Ann. Math. 163, 607–668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wolf, J.: Spaces of Constant Curvature, 5th edn. Publish or Perish, Houston (1984)

    MATH  Google Scholar 

  45. Ziller, W.: On the geometry of cohomogeneity one manifolds with positive curvature. In: Riemannian Topology and Geometric Structures on Manifolds, Progr. Math., vol. 271, pp. 233–262. Birkhäuser, Boston (2009)

  46. Ziller, W.: Riemannian manifolds with positive sectional curvature. In: Geometry of Manifolds with Non-negative Sectional Curvature, Lecture Notes in Mathematics, vol. 2110, pp. 1–19. Springer, Berlin (2014)

Download references

Acknowledgments

The second named author would like to thank Gudlaugur Thorbergsson for very constructive discussions at the time of the work on [25], during which the idea for the present paper was born. The authors also wish to thank Marco Radeschi for useful comments on a preliminary version of this paper. Finally, they would like to thank the anonymous referee for providing them with constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Gorodski.

Additional information

C. Gorodski was partially supported by the CNPq Grant 303038/2013-6 and the FAPESP Project 2011/21362-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodski, C., Lytchak, A. Isometric actions on spheres with an orbifold quotient. Math. Ann. 365, 1041–1067 (2016). https://doi.org/10.1007/s00208-015-1304-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1304-y

Mathematics Subject Classification

Navigation