Skip to main content
Log in

On scalar curvature rigidity of vacuum static spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we extend the local scalar curvature rigidity result in Brendle and Marques (J Differ Geom 88:379–394, 2011) to a small domain on general vacuum static spaces, which confirms the interesting dichotomy of local surjectivity and local rigidity about the scalar curvature in general in the light of the paper (Corvino, Commun Math Phys 214:137–189, 2000). We obtain the local scalar curvature rigidity of bounded domains in hyperbolic spaces. We also obtain the global scalar curvature rigidity for conformal deformations of metrics in the domains, where the lapse functions are positive, on vacuum static spaces with positive scalar curvature, and show such domains are maximal, which generalizes the work in Hang and Wang (Commun Anal Geom 14:91–106, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After we posted the previous version of this paper on arXiv, we were informed that the rigidity part of Theorem 1.3 had been known in [3].

References

  1. Andersson, L., Cai, M., Galloway, G.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Global Anal. Geom. 16, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbosa, E., Mirandola, H., Vitorio, F.: Rigidity theorems of conformal class on compact manifolds with boundary. (2014). arXiv:1411.6851

  4. Bonini, V., Qing, J.: A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface. Ann. Henri Poincaré 9(2), 347–372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S.: Rigidity phenomena involving scalar curvature. (2010). arXiv:1008.3097

  6. Brendle, S., Marques, F.C., Neves, A.: Deformations of the hemisphere that increase scalar curvature. Invent. Math. 185, 175–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brendle, S., Marques, F.C.: Scalar curvature rigidity of geodesic balls in \(S^n\). J. Differ. Geom. 88, 379–394 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cao, H.-D., Catino, G., Chen, Q., Mantegazza, C., Mazzieri, L.: Bach-flat gradient steady Ricci solitons. (2011). arXiv:1107.4591

  9. Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364, 2377–2391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chruściel, P., Herzlic, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pacific J. Math. 212(2), 231–264 (2003)

    Article  MathSciNet  Google Scholar 

  11. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, G., Miao, P., Tam, L.F.: Remarks on a scalar curvature rigidity theorem of Brendle and Marques. Asian J. Math. 17, 457–470 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Li, C.: Methods on nonlinear elliptic equations. AIMS Book Series on Differential Equations & Dynamics, Systems, 4. AIMS (2010)

  14. Cruz, C., Lima, L., Montenegro, J.: Deforming the scalar curvature of the de Sitter-Schwarzschild space. (2014). arXiv:1411.1600

  15. Ebin, D.: The manifold of Riemannian metrics. In: Proc. Sympos. Pure Math., vol. XV (Berkeley, Calif.), pp. 11-40. Amer. Math. Soc., Providence (1968)

  16. Fischer, A., Marsden, J.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hang, F., Wang, X.: Rigidity and non-rigidity results on the sphere. Commun. Anal. Geom. 14, 91–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hang, F., Wang, X.: Rigidity theorems for compact manifolds with boundary and positive Ricci curvature. J. Geom. Anal. 19, 628–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hawkins, S., Ellis, G.: The large scale structure of space-time. Cambridge University Press (1975)

  20. Karp, L., Pinsky, M.: The first eigenvalue of a small geodesic ball in a Riemannian manifold. Bulletin des Sciences Mathématiques 111, 222–239 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Kobayashi, O.: A differential equation arising from scalar curvature function. J. Math. Soc. Jpn. 34(4), 665–675 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi, O., Obata, M.: Conformally-flatness and static space-time. Manifolds and Lie groups, progress in mathematics, vol. 14, pp. 197-206. Birkhäuser (1981)

  23. Lafontaine, J.: Sur la géométrie d’une généralisation de l’équation différentielle d’Obata. J. Math. Pures Appliquées 62, 63–72 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Miao, P.: Posotive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)

    Article  MathSciNet  Google Scholar 

  25. Miao, P., Tam, L.F.: Scalar curvature rigidity with a volume constraint. Commun. Anal. Geom. 20, 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Min-Oo, M.: Scalar curvature rigidity of certain symmetric spaces. In: Geometry, topology, and dynamics (Montreal, 1995), vol. 15, pp. 127–137. CRM Proc. Lecture Notes. American Mathematical Society, Providence RI (1998)

  28. Qing, J.: On the uniqueness of AdS spacetime in higher dimensions. Ann. Henri Poincaré 5, 245–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qing, J., Yuan, W.: A note on static spaces and related problems. J. Geom. Phys 74, 18–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, Y., Tam, L.F.: Positive mass theorem and boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Diff. Geom. 62, 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Yau, S.T.: On the proof of positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schoen, R., Yau, S.T.: Proof of positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Witten, E.: A new proof of the positive mass theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Professors Justin Corvino, Pengzi Miao and Carla Cerderbaum for their interests and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yuan.

Additional information

Research of the authors supported by NSF Grant DMS-1005295 and DMS-1303543.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, J., Yuan, W. On scalar curvature rigidity of vacuum static spaces. Math. Ann. 365, 1257–1277 (2016). https://doi.org/10.1007/s00208-015-1302-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1302-0

Navigation