Skip to main content
Log in

Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This also follows from the geometric results of [15] together with Peterson’s theorem that all rationally smooth elements in type E are smooth.

References

  1. Billey, S., Crites, A.: Pattern characterization of rationally smooth affine Schubert varieties of type \(A\). J. Algebra 361, 107–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A., Ekedahl, T.: On the shape of Bruhat intervals. Ann. Math. 170(2), 799–817 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billey, C.S.: Pattern avoidance and rational smoothness of Schubert varieties. Adv. Math. 139(1), 141–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory. Progress in Mathematics. Birkhäuser, Boston (2004)

    Google Scholar 

  5. Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, vol. 182. Birkhäuser Boston Inc., Boston, MA (2000)

    Book  MATH  Google Scholar 

  6. Borel, A.: Linear Algebraic Groups. Graduate Texts in Mathematics. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968)

  8. Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Math. Z. 231(2), 301–324 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Billey, S., Postnikov, A.: Smoothness of Schubert varieties via patterns in root subsystems. Adv. Appl. Math. 34(3), 447–466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrell, J.B.: The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. In: Haboush, W.J., Parshall, B. (eds.) Algebraic groups and their generalizations: classical methods (University Park, PA, 1991). Proceedings of Symposia in Pure Mathematics, vol. 56, pp. 53–61. American Mathematical Society, Providence, RI (1994)

    Chapter  Google Scholar 

  11. Carrell, J.B., Kuttler, J.: Smooth points of \(T\)-stable varieties in \(G / B\) and the Peterson map. Invent. Math. 151(2), 353–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dyer, M.: Rank two detection of singularities of Schubert varieties (unpublished)

  13. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. 180(3), 1089–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gasharov, V.: Factoring the Poincaré polynomials for the Bruhat order on \(S_n\). J. Combin. Theory Ser. A 83(1), 159–164 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, J., Mok, N.: Characterization of smooth Schubert varieties in rational homogeneous manifolds of Picard number 1. J. Algebra. Geom. 22, 333–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Juteau, D., Williamson, G.: Kumar’s criterion modulo \(p\). Duke Math. J. 163(14), 2617–2638 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, S.: The nil Hecke ring and singularity of Schubert varieties. Invent. Math. 123(3), 471–506 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, S.: Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, vol. 204. Birkhäuser Boston Inc., Boston, MA (2002)

    Book  MATH  Google Scholar 

  19. Lascoux, A.: Ordonner le groupe symétrique: pourquoi utiliser l’algèbre de Iwahori-Hecke? Doc. Math. Extra Vol. ICM III, 355–364 (1998)

    MathSciNet  Google Scholar 

  20. Lakshmibai, V., Sandhya, B.: Criterion for smoothness of Schubert varieties in \({\rm Sl}(n)/B\). Proc. Indian Acad. Sci. Math. Sci. 100(1), 45–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lakshmibai, V., Weyman, J.: Multiplicities of points on a Schubert variety in a minuscule \(G/P\). Adv. Math. 84(2), 179–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mihai, I.A.: Odd symplectic flag manifolds. Transform. Groups 12(3), 573–599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oh, S., Yoo, H.: Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements. In: DMTCS Proceedings FPSAC (2010)

  24. Robles, C.: Singular loci of cominuscule Schubert varieties. J. Pure. Appl. Algebra 218(4), 745–759 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Richmond, E., Slofstra, W.: Rationally smooth elements of Coxeter groups and triangle group avoidance. J. Algebra. Comb. 39(3), 659–681 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ryan, K.M.: On Schubert varieties in the flag manifold of \({\rm Sl}(n,\mathbb{C})\). Math. Ann. 276(2), 205–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tamme, G.: Introduction to étale cohomology. Universitext, Springer, Berlin (1994). Translated from the German by Manfred Kolster

    Book  MATH  Google Scholar 

  28. van den Hombergh, A.: About the automorphisms of the bruhat-ordering in a coxeter group. Indag. Math. Proc. 77(2), 125–131 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolper, J.S.: A combinatorial approach to the singularities of Schubert varieties. Adv. Math. 76(2), 184–193 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Dave Anderson, Sara Billey, Jim Carrell, and Alex Woo for helpful discussions. We thank the anonymous referee for useful suggestions on the manuscript. The first author was partially supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Richmond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richmond, E., Slofstra, W. Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties. Math. Ann. 366, 31–55 (2016). https://doi.org/10.1007/s00208-015-1299-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1299-4

Navigation