Skip to main content
Log in

On entropy, regularity and rigidity for convex representations of hyperbolic manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given a convex representation \(\rho :\Gamma \rightarrow {{\mathrm{PGL}}}(d,\mathbb {R})\) of a convex cocompact group \(\Gamma \) of \({{\mathrm{Isom}}}_+\mathbb {H}^k,\) we find upper bounds for the quantity \(\alpha h_\rho ,\) where \(h_\rho \) is the entropy of \(\rho \) and \(\alpha \) is the Hölder exponent of the equivariant map \({{\partial }_{\infty }}\Gamma \rightarrow \mathbb {P}(\mathbb {R}^d).\) We also give rigidity statements when the upper bound is attained. This provides an analog of Thurston’s metric for convex cocompact groups of \({{\mathrm{Isom}}}_+\mathbb {H}^k.\) We then prove that if \(\rho :\pi _1\Sigma \rightarrow {{\mathrm{PSL}}}(d,\mathbb {R})\) is in the Hitchin component then \(\alpha h_\rho \le 2/(d-1)\) (where \(\alpha \) is the Hölder exponent of Labourie’s equivariant flag curve) with equality if and only if \(\rho \) is Fuchsian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These are also called divisible convex sets with strictly convex boundary or strictly convex projective structures on closed manifolds.

  2. In [20] this is called the exponential growth rate of the cocycle.

References

  1. Abramov, L.M.: On the entropy of a flow. Dokl. Akad. Nauk. SSSR 128, 873–875 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7(1), 1–47 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benoist, Y.: Convexes divisibles I. In: Algebraic Groups and Arithmetic, pp. 339–374. Tata Inst. Fund. Res. (2004)

  4. Benoist, Y.: Convexes divisibles III. Ann. Sci. École Norm. Sup. 38, 793–832 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Bourdon, M.: Structure conforme au bord et flot géodésique d’un CAT \((-1)\)-espace. Enseign. Math. 2(41), 63–102 (1995)

    MathSciNet  Google Scholar 

  6. Bourdon, M.: Sur le birraport au bord des CAT\((-1)\)-espaces. Publ. Math. I.H.E.S. 83, 95–104 (1996)

  7. Bowen, R., Ruelle, D.: The ergodic theory of axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bridgeman, M., Canary, R., Labourie, F., Sambarino, A.: The pressure metric for Anosov representations. http://arxiv.org/abs/1301.7459 (2013)

  9. Courtois, G.: Critical exponents and rigidity in negative curvature. In: Séminaires & Congrés, Géométries à courbure négative ou nulle, groupes discrets et rigidité, vol. 18, pp. 293–319. Société mathématique de France (2009)

  10. Crampon, M.: Entropies of compact strictly convex projective manifolds. J. Modern Dyn. 3, 511–547 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guichard, O.: In preparation

  12. Guichard, O., Wienhard, A.: Anosov representations: domains of discontinuity and applications. Invent. Math. 190, 357–438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamenstädt, U.: Time preserving conjugacies of geodesic flows. Ergodic Theor. Dyn. Syst. 12, 67–74 (1992)

    Article  MATH  Google Scholar 

  14. Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31(3), 449–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knapp, A.: Lie groups beyond an introduction, Birkhauser (2002)

  16. Labourie, F.: Anosov flows, surface groups and curves in projective space. Invent. Math. 165, 51–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ledrappier, F.: Structure au bord des variétés à courbure négative. Séminaire de théorie spectrale et géométrie de Grenoble 71, 97–122 (1994–1995)

  18. Otal, J.-P.: Le spectre marqué des longueurs des surfaces à courbure négative. Ann. Math. 131, 151–162 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pollicott, M.: Symbolic dynamics for Smale flows. Am. J. Math. 109(1), 183–200 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sambarino, A.: Quantitative properties of convex representations. Comment. Math. Helv. 89(2), 443–488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sigmund, K.: On the space of invariant measures for hyperbolic flows. Am. J. Math. 94, 31–37 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sullivan, D.: The densitiy at infinity of a discrete group of hyperbolic motions. Publ. Math. de l’I.H.E.S. 50, 171–202 (1979)

  23. Tits, J.: Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconqe. J. Reine Angew. Math. 247, 196–220 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Yue, C.: The ergodic theory of discrete isometry groups on manifolds of variable negative curvature. Trans. A.M.S. 348(12), 4965–5005 (1996)

Download references

Acknowledgments

The author is extremely thankful to Martin Bridgeman, Dick Canary, Francois Labourie, Alejandro Passeggi and Rafael Potrie for useful discussions. He would like to particularly thank Yves Benoist, Matias Carrasco and Jean-François Quint for discussions that considerably improved the statements of this work, and Qiongling Li for pointing out an error on the first version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sambarino.

Additional information

The author was partially supported by the European Research Council under the European Community’s seventh Framework Program (FP7/2007-2013)/ERC grant agreement No. FP7-246918.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambarino, A. On entropy, regularity and rigidity for convex representations of hyperbolic manifolds. Math. Ann. 364, 453–483 (2016). https://doi.org/10.1007/s00208-015-1215-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1215-y

Navigation