Skip to main content
Log in

S-Duality for surfaces with \(A_n\)-type singularities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that the generating series of Euler characteristics of Hilbert schemes of points on any algebraic surface with at worst \(A_n\)-type singularities is described by the theta series determined by integer valued positive definite quadratic forms and the Dedekind eta function. In particular it is a Fourier development of a meromorphic modular form with possibly half integer weight. The key ingredient is to apply the flop transformation formula of Donaldson–Thomas type invariants counting two dimensional torsion sheaves on threefolds proved in the author’s previous paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In this paper, all the varieties are defined over \(\mathbb {C}\).

  2. The Donaldson–Thomas invariants are the weighted Euler characteristics of the moduli spaces of semistable sheaves w.r.t. the Behrend function [1]. Although they are in general different from the naive Euler numbers of the moduli spaces, they are observed to share common properties (cf. [28]). From this point, we may expect that the 3d S-duality conjecture also holds for the Euler characteristics of moduli spaces.

  3. In [10], the weighted Euler characteristics of \(\mathop {\mathrm{Hilb}}\nolimits ^m(S)\) for a K3 surface \(S\) with \(A_1\)-type singularities is studied. The formula in [10, Example 3.26] involves Noether–Lefschetz numbers, and is different from ours in Theorem 1.1.

  4. This last condition is required to make the computations of the Mukai vectors in Sect. 2.2 simpler, and not essential.

  5. Since \(S^{\dag }\) is singular, we cannot simply apply the Grothendieck Riemann-Roch theorem to compute \(\mathop {\mathrm{ch}}\nolimits (i_{*}^{\dag }\mathcal {O}_{S^{\dag }}(jC^{\dag }))\). In fact, as \(\mathcal {O}_{S^{\dag }}(jC^{\dag })\) is not a perfect object, its Chern character on \(S^{\dag }\) is not defined in the usual way.

References

  1. Behrend, K.: Donaldson-Thomas invariants via microlocal geometry. Ann. Math. 170, 1307–1338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Behrend, K., Fantechi, B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2, 313–345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bridgeland, T.: Flops and derived categories. Invent. Math. 147, 613–632 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bridgeland, T.: Hall algebras and curve-counting invariants. J. Am. Math. Soc. 24, 969–998 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bruinier, J.H., van der Geer, G., Harder, G., Zagier, D.: The 1-2-3 of Modular Forms. Letures at a Summer School in Nordfjordeid. Springer, Norway (2007)

    Google Scholar 

  6. Calabrese, J.: Donaldson–Thomas invariants on flops (to appear in Crelle). arXiv:1111.1670

  7. Denef, F., Moore, G.: Split states, entropy enigmas, holes and halos. arXiv:hep-th/0702146

  8. Göttsche, L.: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286, 193–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Göttsche, L.: Invariants of moduli spaces and modular forms. Rend. Istit. Mat. Univ. Trieste 41, 55–76 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Gholampour, A., Sheshmani, A.: Donaldson-Thomas invariants of 2-dimensional sheaves inside threefolds and modular forms (preprint). arXiv:1309.0050

  11. Gaiotto, D., Strominger, A., Yin, X.: The M5-brane elliptic genus: modularity and BPS states. arXiv:hep-th/0607010

  12. Gaiotto, D., Yin, X.: Examples of M5-brane elliptic genera. JHEP 0711, 004 (2007). arXiv:hep-th/0702012

  13. Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants. Mem. Am. Math. Soc. 217 (2012)

  14. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (preprint). arXiv:0811.2435

  15. Li, J.: Zero dimensional Donaldson-Thomas invariants of threefolds. Geom. Topol. 10, 2117–2171 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Levine, M., Pandharipande, R.: Algebraic cobordism revisited. Invent. Math. 176, 63–130 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maulik, D.: Stable pairs and the HOMFLY polynomial (preprint). arXiv:1210.6323

  18. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory. I. Compositio. Math. 142, 1263–1285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nishinaka, T.: Multiple D4-D2-D0 on the conifold and wall-crossing with the flop (preprint). arXiv:1010.6002

  20. Nishinaka, T. Yamaguchi, S.: Wall-crossing of D4-D2-D0 and flop of the conifold (preprint). JHEP 1009, 026 (2010). arXiv:1007.2731

  21. Oblomkov, A., Shende, V.: The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link. Duke Math. J. 161, 1277–1303 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ooguri, H., Strominger, A., Vafa, C.: Black hole attractors and the topological string. Phys. Rev. D 70 (2004). arXiv:hep-th/0405146

  23. Pandharipande, R., Thomas, R.P.: Stable pairs and BPS invariants. J. Am. Math. Soc. 23, 267–297 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reid, M.: Minimal models of canonical 3-folds. In: Iitaka, S. (ed). Algebraic Varieties and Analytic Varieties, Advanced Studies in Pure Mathematics, Kinokuniya, Tokyo, North-Holland, Amsterdam, vol. 1, pp. 131–180 (1983)

  25. Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  26. Thomas, R.P.: A holomorphic Casson invariant for Calabi–Yau 3-folds and bundles on \({K3}\)-fibrations. J. Differ. Geom. 54, 367–438 (2000)

    MATH  Google Scholar 

  27. Toda, Y.: Flops and S-duality conjecture (preprint). arXiv:1311.7476

  28. Toda, Y.: Curve counting theories via stable objects I: DT/PT correspondence. J. Am. Math. Soc. 23, 1119–1157 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Toda, Y.: Curve counting theories via stable objects II. DT/ncDT flop formula. J. Reine Angew. Math. 675, 1–51 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vafa, C., Witten, E.: A strong coupling test of S-duality. Nucl. Phys. B 431, 3–77 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Van den Bergh, M.: Three dimensional flops and noncommutative rings. Duke Math. J. 122, 423–455 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zagier, D.: Introduction to Modular Forms, Les Houches, From Number Theory to Physics, pp. 238–291 (1992)

Download references

Acknowledgments

This work is supported by World Premier International Research Center Initiative (WPI initiative), MEXT, Japan. This work is also supported by Grant-in Aid for Scientific Research Grant (22684002) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukinobu Toda.

Appendix: Combinatorics on Quot schemes of points on \(A_{n-1}\)

Appendix: Combinatorics on Quot schemes of points on \(A_{n-1}\)

In this appendix, we describe \(\chi (\mathop {\mathrm{Quot}}\nolimits ^{m}(\mathcal {O}_{A_{n-1}}(jD)))\) in terms of certain combinatorial data on Young diagrams. In what follows, we regard a Young diagram as a subset in \(\mathbb {Z}_{\ge 0}^{2}\) in the usual way, say:

$$\begin{aligned} Y= \begin{array}{l} \square \!\square \! \\ \square \!\square \!\square \end{array} \ \Leftrightarrow \ \{(0, 0), (1, 0), (2, 0), (1, 0), (1, 1) \}. \end{aligned}$$

Recall that there is a one to one correspondence between the set of ideals \(I \subset \mathbb {C}[x, y]\) generated by monomials and that of Young diagrams, by assigning \(I\) with the Young diagram \(Y_I\):

$$\begin{aligned} Y_I := \{(a, b) \in \mathbb {Z}_{\ge 0}^2 : x^a y^b \notin I\}. \end{aligned}$$
(26)

For a Young diagram \(Y\), we introduce the following notation:

$$\begin{aligned}&Y^{\rightarrow } := \{Y+(1, 0)\} \cup \{\{0\} \times \mathbb {Z}_{\ge 0}\} \\&Y^{\nearrow } := \{Y+(1, 1)\} \cup \{\mathbb {Z}_{\ge 0} \times \{0\}\} \cup \{\{0\} \times \mathbb {Z}_{\ge 0}\}. \end{aligned}$$

Note that \(Y^{\rightarrow }\) and \(Y^{\nearrow }\) are Young diagrams with infinite number of blocks. See the following picture:

$$\begin{aligned} Y= \begin{array}{l} \square \!\square \! \\ \square \!\square \!\square \end{array} \ \Rightarrow \ Y^{\rightarrow }= \begin{array}{l} \vdots \\ \square \! \\ \square \! \\ \square \! \\ \square \!\square \!\square \! \\ \square \!\square \!\square \!\square \! \end{array} \ Y^{\nearrow }= \begin{array}{l} \vdots \\ \square \! \\ \square \! \\ \square \!\square \!\square \! \\ \square \!\square \!\square \!\square \! \\ \square \!\square \!\square \!\square \!\square \!\square \!\cdots \end{array} \end{aligned}$$

Lemma 4.1

For \(0\le j\le n-1\), the number \(\chi (\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}(-jD)))\) coincides with the number of \(n\)-tuples of Young diagrams \((Y_0, Y_1, \ldots , Y_{n-1})\) satisfying

$$\begin{aligned} Y_{n-1} \subset \cdots \subset Y_j \subset Y_{j-1}^{\rightarrow } \subset \cdots \subset Y_0^{\rightarrow } \subset Y_{n-1}^{\nearrow }, \quad \sum _{i=0}^{n-1} |Y_i |=m. \end{aligned}$$
(27)

Proof

Giving a point in \(\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}(-jD))\) is equivalent to giving an ideal \(I \subset \mathcal {O}_{A_{n-1}}\) such that \(I \subset \mathcal {O}_{A_{n-1}}(-jD)\) and \(\mathcal {O}_{A_{n-1}}(-jD)/I\) is a \(m\)-dimensional \(\mathbb {C}\)-vector space. As a \(\mathbb {C}\)-vector space, we have the decomposition

$$\begin{aligned} I=\bigoplus _{k=0}^{n-1} I_k \cdot z^k \end{aligned}$$
(28)

for sub vector spaces \(I_k \subset \mathbb {C}[x, y]\). Since \(I\) is an ideal in \(\mathcal {O}_{A_{n-1}}\), each \(I_k\) is an ideal in \(\mathbb {C}[x, y]\). Moreover since \(I\) must be closed under the multiplication by \(z\), we have

$$\begin{aligned} xy I_{n-1} \subset I_0 \subset I_1 \subset \cdots \subset I_{n-1}. \end{aligned}$$
(29)

Since \(\mathcal {O}_{A_{n-1}}(-jD)=(x, z^j)\), the condition \(I \subset \mathcal {O}_{A_{n-1}}(-jD)\) is equivalent to \(I_k \subset (x)\) for \(0\le k \le j-1\). Hence for \(0\le k\le j-1\), we have \(I_k=I_k' \cdot (x)\) for some ideal \(I_k' \subset \mathbb {C}[x, y]\). We obtain the sequence of ideals in \(\mathbb {C}[x, y]\):

$$\begin{aligned} I_0', \ldots , I_j', I_{j+1}, \ldots I_{n-1}. \end{aligned}$$
(30)

The condition that \(\mathcal {O}_{A_{n-1}}(-jD)/I\) is \(m\)-dimensional is equivalent to

$$\begin{aligned} \sum _{k=0}^{j-1} \dim \mathbb {C}[x, y]/I_k' + \sum _{k=j}^{n-1}\dim \mathbb {C}[x, y]/I_k =m. \end{aligned}$$
(31)

Conversely suppose that we have a sequence of ideals (30) in \(\mathbb {C}[x, y]\) satisfying (31) and (29) for \(I_k=I_k' \cdot (x)\) with \(0\le k\le j-1\). Then we obtain an ideal \(I \subset \mathcal {O}_{A_{n-1}}\) by setting (28), which gives a point in \(\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}(-jD))\). Note that \(T=(\mathbb {C}^{*})^{\times 2}\) acts on \(A_{n-1}\) via \((t_1, t_2) \cdot (x, y, z)=(t_1^n x, t_2 ^n y, t_1 t_2 z)\), and the ideal (28) is \(T\)-fixed if and only if the corresponding ideals in (30) are generated by monomials. Therefore the \(T\)-fixed locus of \(\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}(-jD))\) is identified with the set of \(n\)-tuples of Young diagrams \((Y_0, \ldots , Y_n)\) satisfying (27), by assigning a sequence (30) with

$$\begin{aligned} (Y_0, \ldots , Y_n)= (Y_{I_0'}, \ldots , Y_{I_{j-1}'}, Y_{I_j}, \ldots , Y_{I_{n-1}}) \end{aligned}$$

as in (26). By the \(T\)-localization, we obtain the desired result. \(\square \)

Remark 4.2

The number \(\chi (\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}(-jD)))\) in Lemma 4.1 and the coefficients in the LHS of (7) are related by

$$\begin{aligned} \chi (\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}(-jD)))= \chi (\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_{n-1}}((n-j)D))) \end{aligned}$$
(32)

as \(\mathcal {O}_{A_{n-1}}(nD) \cong \mathcal {O}_{A_{n-1}}\).

We compare the formula (7) with the numbers of \(n\)-tuples of Young diagrams in Lemma 4.1 in examples:

Example 4.3

  1. (i)

    If \(n=2\) and \(j=0\), then the formula (7) implies

    $$\begin{aligned} \sum _{m\ge 0} \chi (\mathop {\mathrm{Hilb}}\nolimits ^m(A_1))q^m = 1+ q+3q^2 + 5q^3 + 9q^4 + 14q^5 + \cdots . \end{aligned}$$

    For instance, \(\chi (\mathop {\mathrm{Hilb}}\nolimits ^5(A_1))\) corresponds to the following 14 pairs of Young diagrams \((Y_0, Y_1)\):

    $$\begin{aligned}&\left( \begin{array}{l} \square \! \\ \square \! \\ \square \! \\ \square \! \\ \square \! \end{array}, \emptyset \right) , \ \left( \begin{array}{l} \square \! \\ \square \! \\ \square \! \\ \square \!\square \! \end{array}, \emptyset \right) , \ \left( \begin{array}{l} \square \! \\ \square \! \\ \square \!\square \!\square \! \end{array}, \emptyset \right) , \ \left( \begin{array}{l} \square \! \\ \square \!\square \!\square \!\square \! \end{array}, \emptyset \right) , \\&\left( \begin{array}{l} \square \!\square \!\square \!\square \!\square \! \end{array}, \emptyset \right) , \ \left( \begin{array}{l} \square \! \\ \square \! \\ \square \! \\ \square \! \end{array}, \begin{array}{l} \\ \\ \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \! \\ \square \! \\ \square \!\square \! \end{array}, \begin{array}{l} \\ \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \!\square \! \\ \square \!\square \! \end{array}, \begin{array}{l} \\ \square \! \end{array} \right) , \\&\left( \begin{array}{l} \square \! \\ \square \!\square \!\square \! \end{array}, \begin{array}{l} \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \!\square \!\square \!\square \! \end{array}, \begin{array}{l} \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \! \\ \square \! \\ \square \! \end{array}, \begin{array}{l} \\ \square \! \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \! \\ \square \!\square \! \end{array}, \begin{array}{l} \square \! \\ \square \! \end{array} \right) , \\&\left( \begin{array}{l} \square \! \\ \square \!\square \! \end{array}, \begin{array}{l} \\ \square \!\square \! \end{array} \right) , \ \left( \begin{array}{l} \square \!\square \!\square \! \end{array}, \begin{array}{l} \square \!\square \! \end{array} \right) . \end{aligned}$$
  2. (ii)

    If \(n=2\) and \(j=1\), then (7) and (32) yield

    $$\begin{aligned} \sum _{m\ge 0} \chi (\mathop {\mathrm{Quot}}\nolimits ^m(\mathcal {O}_{A_1}(-D)))q^m = 1+ 2q+3q^2 + 6q^3 + 10q^4 + 16q^5 + \cdots . \end{aligned}$$

    Similarly to (i), \(\chi (\mathop {\mathrm{Quot}}\nolimits ^5(\mathcal {O}_{A_1}(-D)))\) corresponds to the following 16 pairs of Young diagrams \((Y_0, Y_1)\):

    $$\begin{aligned}&\left( \begin{array}{l} \square \!\square \!\square \!\square \!\square \! \end{array}, \emptyset \right) , \ \left( \begin{array}{l} \square \!\square \!\square \!\square \! \end{array}, \begin{array}{l} \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \! \\ \square \!\square \!\square \! \end{array}, \begin{array}{l} \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \!\square \!\square \! \end{array}, \begin{array}{l} \square \!\square \! \end{array} \right) , \\&\left( \begin{array}{l} \square \! \\ \square \!\square \! \end{array}, \begin{array}{l} \\ \square \!\square \! \end{array} \right) , \ \left( \begin{array}{l} \square \! \\ \square \! \\ \square \! \end{array}, \begin{array}{l} \\ \square \! \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \square \! \\ \square \!\square \! \end{array}, \begin{array}{l} \square \! \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \\ \square \!\square \!\square \! \end{array}, \begin{array}{l} \square \! \\ \square \! \end{array} \right) , \\&\left( \begin{array}{l} \\ \\ \square \!\square \! \end{array}, \begin{array}{l} \square \! \\ \square \! \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \\ \square \!\square \! \end{array}, \begin{array}{l} \square \! \\ \square \!\square \! \end{array} \right) , \ \left( \begin{array}{l} \square \!\square \! \end{array}, \begin{array}{l} \square \!\square \!\square \! \end{array} \right) , \ \left( \begin{array}{l} \\ \square \! \\ \square \! \end{array}, \begin{array}{l} \square \\ \square \! \\ \square \! \end{array} \right) , \\&\left( \begin{array}{l} \square \! \\ \square \! \end{array}, \begin{array}{l} \square \! \\ \square \!\square \! \end{array} \right) , \ \left( \begin{array}{l} \\ \\ \\ \square \! \end{array}, \begin{array}{l} \square \! \\ \square \! \\ \square \! \\ \square \! \end{array} \right) , \ \left( \begin{array}{l} \\ \\ \square \! \end{array}, \begin{array}{l} \square \! \\ \square \! \\ \square \!\square \! \end{array} \right) , \ \left( \emptyset , \begin{array}{l} \square \! \\ \square \! \\ \square \! \\ \square \! \\ \square \! \end{array} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toda, Y. S-Duality for surfaces with \(A_n\)-type singularities. Math. Ann. 363, 679–699 (2015). https://doi.org/10.1007/s00208-015-1184-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1184-1

Navigation