Skip to main content
Log in

Isometries of Lorentz surfaces and convergence groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the isometry group of a globally hyperbolic spatially compact Lorentz surface. Such a group acts on the circle, and we show that when the isometry group acts non properly, the subgroups of \(\mathrm {Diff}(\mathbb {S}^1)\) obtained are semi conjugate to subgroups of finite covers of \(\mathrm {PSL}(2,\mathbb {R})\) by using convergence groups. Under an assumption on the conformal boundary, we show that we have a conjugacy in \(\mathrm {Homeo}(\mathbb {S}^1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A Riemannian manifold on which the conformal group acts non properly is conformally diffeomorphic to the round sphere or to the Euclidian space.

References

  1. Adams, S.: Dynamics on Lorentz Manifolds. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  2. Adams, S., Stuck, G.: The isometry group of a compact Lorentz manifold. Inventiones Mathematicae 129, 239–261 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, S., Stuck, G.: The isometry group of a compact Lorentz manifold II. Inventiones Mathematicae 129, 263–287 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbot, T.: Flots d’Anosov sur les variétés graphées au sens de Waldhausen. Ann. Inst. Fourier 46, 1451–1517 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbot, T.: Actions de groupes sur les 1-variétés non séparées et feuilletages de codimension 1. Ann. Fac. Sci. Toulouse Math. (6) 7(4), 559–597 (1998)

  6. Barbot, T.: Plane affine geometry of Anosov flows. Annales Scientifiques de l’Ecole Normale Supérieure 34(6), 871–889 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, Pure and Applied Mathematics, 2nd edn. Marcel Dekker, New York (1996)

  8. Bavard, C., Mounoud, P.: Sur les surfaces lorentziennes compactes sans points conjugués. Geom. Topol. 17, 469–492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernal, A., Sánchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243(3), 461–470 (2003)

    Article  MATH  Google Scholar 

  10. Casson, A., Jungreis, D.: Convergence groups and Seifert fibered 3-manifolds. Invent. Math. 118(3), 441–456 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrière, Y., Rozoy, L.: Complétude des métriques lorentziennes de \({{\mathbb{T}}^{2}}\) et difféomorphismes du cercle. Bol. Soc. Bras. Mat. 25(2), 223–235 (1994)

    Article  MATH  Google Scholar 

  12. Duval, C., Guieu, L.: The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet. J. Geom. Phys. 33, 103–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Ambra, G., Gromov, M.: Lectures on transformation groups: geometry and dynamics. Surv. Differ. Geom. 1, 19–111 (1991)

    Article  MathSciNet  Google Scholar 

  14. Duval, C., Ovsienko, V.: Lorentzian worldlines and the Schwarzian derivative. Funct. Anal. Appl. 34(2), 135–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferrand, J.: The action of conformal transformations on a Riemannian manifold. Math. Ann. 304, 277–291 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frances, C.: Des contre-exemples au théorème de Ferrand–Obata en géométrie Lorentzienne conforme. Math. Ann. 332(1), 103–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frances, C.: Sur le groupe d’automorphismes des géométries paraboliques de rang un. Ann. Scient. Ec. Norm. Sup. 40, 741–764 (2007)

  18. Foulon, P., Hasselblatt, B.: Contact Anosov flows on hyperbolic 3-manifolds. Geom. Topol. 17, 1225–1252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flores, J.L., Herrera, J., Sánchez, M.: On the final definition of the causal boundary and its relation with the conformal boundary. Adv. Theor. Math. Phys. 15, 991–1058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frances, C., Tarquini, C.: Autour du théorème de Ferrand–Obata. Ann. Glob. Anal. Geom. 21, 51–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gabai, D.: Convergence groups are Fuchsian groups. Ann. Math. 136, 447–510 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghys, E.: Groupes d’homéomorphismes du cercle et cohomologie bornée (Homeomorphism groups of the circle and bounded cohomology). In: The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math., vol. 58, III, pp. 81–106. American Mathematical Soceity, Providence, RI (1987)

  23. Ghys, E.: Groups acting on the circle. Enseign. Math. (2) 47(3–4), 329–407 (2001)

  24. Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. de l’I.H.E.S. 49, 5–234 (1979)

  25. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  26. Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, Berlin (1972)

  27. Kowalsky, N.: Actions of non-compact simple groups on Lorentz manifolds and other geometric manifolds. Ann. Math. (2) 144, 611–640 (1996)

  28. Monclair, D.: Differential conjugacy for groups of area preserving circle diffeomorphisms. arXiv:1402.0424

  29. Monclair, D.: Convergence groups and semi conjugacy. Ergod. Theory Dyn. Syst., available on CJO2014 (2014). doi:10.1017/etds.2014.96

  30. Monclair, D.: Dynamique lorentzienne et groupes de difféomorphismes du cercle. Ph.D. Thesis, ENS de Lyon (2014)

  31. Martin, G., Skora, R.: Group actions of the 2-sphere. Am. J. Math. 111(3), 387–402 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics. Elsevier Science, Amsterdam (1983)

    Google Scholar 

  33. O’Neill, B.: The Geometry of Kerr Black Holes. A K Peters Ltd, Wellesley (1995)

  34. Piccione, P., Zeghib, A.: Actions of discrete groups on stationary Lorentz manifolds. Ergod. Theory Dyn. Syst., available on CJO2013 (2013). doi:10.1017/etds.2013.17

  35. Suhr, S.: Closed geodesics in Lorentzian surfaces. Trans. Am. Math. Soc. 365, 1469–1486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121(1), 169–186 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weinstein, T.: An introduction to Lorentz surfaces. de Gruyter Expositions in Mathematics, vol. 22, XIV, p. 213. Walter de Gruyter & Co., Berlin (1996). ISBN: 3-11-014333-X

  38. Zeghib, A.: Isometry groups and geodesic foliations of Lorentz manifolds. Part I: Foundations of Lorentz dynamics. Geom. Funct. Anal. 9, 775–822 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeghib, A.: Isometry groups and geodesic foliations of Lorentz manifolds. Part II: Geometry of analytic Lorentz manifolds with large isometry groups. Geom. Funct. Anal. 9, 823–854 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work corresponds to chapters 1 and 3 of my PhD thesis [30]. I would like to thank my advisor Abdelghani Zeghib for his help throughout this work, as well as Thierry Barbot for some important remarks on a first version of this paper. This work was partially supported by ANR project GR-Analysis-Geometry (ANR-2011-BS01-003-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Monclair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monclair, D. Isometries of Lorentz surfaces and convergence groups. Math. Ann. 363, 101–141 (2015). https://doi.org/10.1007/s00208-014-1157-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1157-9

Navigation