Skip to main content
Log in

Toric partial density functions and stability of toric varieties

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \((L, h)\rightarrow (X, \omega )\) denote a polarized toric Kähler manifold. Fix a toric submanifold \(Y\) and denote by \(\hat{\rho }_{tk}:X\rightarrow \mathbb {R}\) the partial density function corresponding to the partial Bergman kernel projecting smooth sections of \(L^k\) onto holomorphic sections of \(L^k\) that vanish to order at least \(tk\) along \(Y\), for fixed \(t>0\) such that \(tk\in \mathbb {N}\). We prove the existence of a distributional expansion of \(\hat{\rho }_{tk}\) as \(k\rightarrow \infty \), including the identification of the coefficient of \(k^{n-1}\) as a distribution on \(X\). This expansion is used to give a direct proof that if \(\omega \) has constant scalar curvature, then \((X, L)\) must be slope semi-stable with respect to \(Y\) (cf. Ross and Thomas in J Differ Geom 72(3): 429–466, 2006). Similar results are also obtained for more general partial density functions. These results have analogous applications to the study of toric K-stability of toric varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. To be more precise, we should say that \([\omega _P]\) is integral iff \(\mu \) (which is only determined up to an additive constant) can be chosen to make \(P\) integral.

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641–651 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abreu, M.: Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001). Fields Institute Communications, vol. 35, pp. 1–24. American Mathematical Society, Providence (2003)

  3. Berman, R., Berndtsson, B., Sjöstrand, J.: A direct approach to Bergman kernel asymptotics for positive line bundles. Ark. Mat. 46(2), 197–217 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5), 1485–1524 (2009)

    Article  MATH  Google Scholar 

  5. Burns, D., Guillemin, V., Uribe, A.: The spectral density function of a toric variety, Pure Appl. Math. Q. 6(2), 361–382 (2010). Special Issue: In honor of Michael Atiyah and Isadore Singer

    Google Scholar 

  6. Biquard, O.: Métriques kählériennes à courbure scalaire constante: unicité, stabilité, Astérisque 307 (2006), Exp. No. 938, vii, 1–31, Séminaire Bourbaki, vol. 2004/2005

  7. Catlin, D.: The Bergman, kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables (Katata, 1997). Trends in Mathematics, pp. 1–23 Birkhäuser, Boston (1999)

  8. Chen, X.-X., Donaldson, S., Sun S.: Kahler–Einstein metrics and stability. ArXiv, preprint arXiv:1210.7494 (2012)

  9. Chen, X.-X., Donaldson, S., Sun, S.: Kahler–Einstein metrics on fano manifolds, i: approximation of metrics with cone singularities, ArXiv, preprint arXiv:1211.4566 (2012)

  10. Chen, X.-X., Donaldson, S., Sun, S.: Kahler–Einstein metrics on Fano manifolds, II: limits with cone angle less than \(2\pi \), ArXiv, preprint arXiv:1212.4714 (2012)

  11. Chen, X.-X., Donaldson, S., Sun, S.: Kahler–Einstein metrics on Fano manifolds. III: Limits as the cone angle approaches \(2\pi \) and completion of the main proof, ArXiv, preprint arXiv:1302.0282 (2013)

  12. Donaldson, S.K.: Scalar curvature and projective embeddings, I. J. Differ. Geom. 59(3), 479–522 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)

    Google Scholar 

  15. Donaldson, S.K.: Scalar curvature and projective embeddings, II. Q. J. Math. 56(3), 345–356 (2005)

    Google Scholar 

  16. Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2), 571–618 (2009). Special Issue: In honor of Friedrich Hirzebruch. Part 1

  17. Fine, J.: Calabi flow and projective embeddings. J. Differ. Geom. 84(3), 489–523 (2010). With an appendix by Kefeng Liu and Xiaonan Ma

    Google Scholar 

  18. Fine, J., Keller, J., Panov, D., Szekelyhidi, G., Thomas, R.: Imperial College lunchtime working group on Bergman Kernels. Private communication (2009)

  19. Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton (1993); The William H. Roever Lectures in Geometry

  20. Guillemin, V., Sternberg, S.: Riemann sums over polytopes. Ann. Inst. Fourier (Grenoble) 57(7), 2183–2195 (2007); Festival Yves Colin de Verdière

  21. Guillemin, V.: Kaehler structures on toric varieties. J. Differ. Geom. 40(2), 285–309 (1994)

    MATH  MathSciNet  Google Scholar 

  22. Karshon, Y., Sternberg, S., Weitsman, J.: Euler-Maclaurin with remainder for a simple integral polytope. PNAS 100(2), 426–433 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Am. J. Math. 122(2), 235–273 (2000)

    Article  MATH  Google Scholar 

  24. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels. Progress in Mathematics, vol. 254. Birkhäuser, Basel (2007)

  25. Pokorny, F.T.: The Bergman Kernel on Toric Kähler Manifolds. PhD thesis, University of Edinburgh, UK (2011)

  26. Phong, D.H., Sturm, J.: Scalar curvature, moment maps, and the deligne pairing. Am. J. Math. 126(3), 693–712 (2004)

    Google Scholar 

  27. Ross, J., Thomas, R.: An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differ. Geom. 72(3), 429–466 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Ross, J., Thomas, R.P.: A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16(2), 201–255 (2007)

    Google Scholar 

  29. Sena-Dias, R.: Spectral measures on toric varieties and the asymptotic expansion of Tian-Yau-Zelditch. J. Symplectic Geom. 8(2), 119–142 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stoppa, J.: K-stability of constant scalar curvature Kähler manifolds. Adv. Math. 221(4), 1397–1408 (2009)

    Google Scholar 

  31. Shiffman, B., Zelditch, S.: Random polynomials with prescribed Newton polytope. J. Am. Math. Soc. 17(1), 49–108 (2004)

    Google Scholar 

  32. Song, J., Zelditch, S.: Convergence of Bergman geodesics on \({ CP}^1\). Ann. Inst. Fourier (Grenoble) 57(7), 2209–2237 (2007); Festival Yves Colin de Verdière

  33. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom 32(1), 99–130 (1990)

    MATH  Google Scholar 

  34. Tian, G.: The \(K\)-energy on hypersurfaces and stability. Commun. Anal. Geom. 2(2), 239–265 (1994)

  35. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

    Google Scholar 

  36. Tian, G.: K-stability and Kähler–Einstein metrics, ArXiv, preprint arXiv:1211.4669 (2012)

  37. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Notices (6), 317–331 (1998)

  38. Zhou, B., Zhu, X.: \(K\)-stability on toric manifolds. Proc. Am. Math. Soc. 136(9), 3301–3307 (2008)

Download references

Acknowledgments

We thank Julius Ross, Richard Thomas and Steve Zelditch for useful conversations. The second author was supported by a Leverhulme Research Fellowship while this work was being completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokorny, F.T., Singer, M. Toric partial density functions and stability of toric varieties. Math. Ann. 358, 879–923 (2014). https://doi.org/10.1007/s00208-013-0978-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0978-2

Mathematics Subject Classification (2000)

Navigation