Skip to main content
Log in

A classification theorem for Helfrich surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study the functional \(\mathcal W{} _{\lambda _1,\lambda _2}\), which is the sum of the Willmore energy, \(\lambda _1\)-weighted surface area, and \(\lambda _2\)-weighted volume, for surfaces immersed in \(\mathbb R ^3\). This coincides with the Helfrich functional with zero ‘spontaneous curvature’. Our main result is a complete classification of all smooth immersed critical points of the functional with \(\lambda _1\ge 0\) and small \(L^2\) norm of tracefree curvature, with no assumption on the growth of the curvature in \(L^2\) at infinity. This not only improves the gap lemma due to Kuwert and Schätzle for Willmore surfaces immersed in \(\mathbb R ^3\) but also implies the non-existence of critical points of the functional satisfying the energy condition for which the surface area and enclosed volume are positively weighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.T.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, J., Do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bucciarelli, L., Dworsky, N.: Sophie Germain: An Essay in the History of the Theory of Elasticity. Springer, Berlin (1980)

  4. Dall’Acqua, A., Deckelnick, K., Wheeler G.: Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc. Var. Partial Differ. Equ. (2012). doi:10.1007/s00526-012-0551-y

  5. Dall’Acqua, A., Fröhlich, S., Grunau, H.-C., Schieweck, F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4(1), 1–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deckelnick, K., Grunau, H.-C.: A Navier boundary value problem for Willmore surfaces of revolution. Analysis 29(3), 229–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ecker, K.: Regularity Theory for Mean Curvature Flow, volume 57 of Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Basel (2004)

  8. Fischer-Colbrie, D.: Some rigidity theorems for minimal submanifolds of the sphere. Acta Math. 145, 29–46 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Germain, S.: Recherches sur la thèorie des surfaces élastiques. Imprimerie de Huzard-Courcier, Paris (1921)

    Google Scholar 

  10. Grosse-Brauckmann, K.: Surfaces of constant mean curvature. Lecture notes (2010)

  11. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28(11), 693–703 (1973)

    MathSciNet  Google Scholar 

  13. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)

    MATH  Google Scholar 

  14. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002)

    MATH  Google Scholar 

  15. Lawson, H.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89(1), 187–197 (1969)

    Article  MATH  Google Scholar 

  16. Michael, J., Simon, L.: Sobolev and mean-value inequalities on generalized submanifolds of \({\mathbb{R}}^n\). Commun. Pure Appl. Math. 26(3), 361–379 (1973)

  17. Poisson, S.: Mémoire sur les surfaces élastiques. Cl. Sci. Mathém. Phys. Inst. de France (2nd printing), 167–225 (1812)

  18. Reilly, R.: Extrinsic rigidity theorems for compact submanifolds of the sphere. J. Differ. Geom. 4, 487–497 (1970)

    MathSciNet  MATH  Google Scholar 

  19. Schadow, W.: See footnote on page 56 in [21] (1922)

  20. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88(1), 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomsen, G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie (German). Abh. Math. Sem. Hamburg 3, 31–56 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wheeler, G.: Surface diffusion flow near spheres. Calc. Var. Partial Differ. Equ. 44, 131–151 (2012)

    Article  MATH  Google Scholar 

  23. Willmore, T.: Note on embedded surfaces. An. St. Univ. Iasi Mat. 12B, 493–496 (1965)

  24. Willmore, T.: Riemannian Geometry. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  25. Yau, S.: Submanifolds with constant mean curvature. Am. J. Math. 96(2), 346–366 (1974)

    Article  MATH  Google Scholar 

  26. Yokota, T.: Perelman’s reduced volume and a gap theorem for the Ricci flow. Commun. Anal. Geom. 17(2), 227–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of the first author was supported under the Australian Research Council’s Discovery Projects scheme (Project Number DP120100097). The first author is also grateful for the support of the University of Wollongong Faculty of Informatics Research Development Scheme grant. Part of this work was carried out while the second author was a research associate supported by the Institute for Mathematics and its Applications at the University of Wollongong. Part of this work was also carried out while the second author was a Humboldt research fellow at the Otto-von-Guericke Universität Magdeburg. The support of the Alexander von Humboldt Stiftung is gratefully acknowledged. The authors would each like to thank their home institutions for their support and their collaborator’s home institutions for their hospitality during respective visits. Both authors would also like to thank Prof. Graham Williams for useful discussions during the preparation of this work. They further would like to thank the anonymous referees whose suggestions have led to improvements to the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Wheeler.

Additional information

Financial support for G. Wheeler from the Alexander-von-Humboldt Stiftung is gratefully acknowledged.

Appendix: Selected proofs

Appendix: Selected proofs

We collect here the proofs of several well-known formulae and results for the convenience of the reader and readability of the paper. Many of the statements contained in this appendix have appeared in a similar form in [13, 14].

Proof of (12), cf. [13, Lem. 2.3]. Let us first prove that

$$\begin{aligned} \nabla \Delta H = \Delta \nabla H - \frac{1}{4}H^2\nabla H + A*A^o*\nabla H. \end{aligned}$$
(24)

Equation (8) implies

$$\begin{aligned} \nabla _{ijk}H - \nabla _{jik}H = (A_{lj}A_{ik} - A_{il}A_{jk})g^{lm}\nabla _mH, \end{aligned}$$

so

$$\begin{aligned} \nabla _{j}\Delta H = \Delta \nabla _{j}H - (A^m_{j}H - A^m_{p}A^p_{j})\nabla _mH. \end{aligned}$$
(25)

Note that

$$\begin{aligned} A^m_j\nabla _mH&= \left( (A^o)^m_j + \frac{1}{2}\delta ^m_jH\right) \nabla _mH = \frac{1}{2}H\nabla _jH + A^o*\nabla H\\ A^m_pA^p_j\nabla _mH&= \left( (A^o)^p_j + \frac{1}{2}\delta ^p_jH\right) \left( (A^o)^m_p + \frac{1}{2}\delta ^m_pH\right) \nabla _mH\\&= \frac{1}{4}H^2\nabla _jH + A^o*A^o*\nabla H + H A^o*\nabla H, \end{aligned}$$

which when combined with (25) above gives (24). Testing (24) against \(\nabla H\,\gamma ^4\) and integrating yields

$$\begin{aligned} \int _\varSigma \langle {{\nabla \Delta H}, {\nabla H}}\rangle _g \gamma ^4 \,d\mu&= \int _\varSigma \langle {{\Delta \nabla H}, {\nabla H}}\rangle _g \gamma ^4 \,d\mu \nonumber \\&- \frac{1}{4} \int _\varSigma |H|^2|\nabla H|^2\gamma ^4\,d\mu \!+\! \int _\varSigma A*A^o*\nabla H*\nabla H\, \gamma ^4\,d\mu .\qquad \end{aligned}$$
(26)

Using the divergence theorem we have

$$\begin{aligned} \int _\varSigma \langle {{\nabla \Delta H}, {\nabla H}}\rangle _g \gamma ^4 \,d\mu = -\int _\varSigma |\Delta H|^2\gamma ^4\,d\mu - 4\int _\varSigma \Delta H \langle {{\nabla H}, {\nabla \gamma }}\rangle _g\gamma ^3\,d\mu \end{aligned}$$

and

$$\begin{aligned} \int _\varSigma \langle {{\Delta \nabla H}, {\nabla H}}\rangle _g \gamma ^4 \,d\mu = -\int _\varSigma |\nabla _{(2)}H|^2\gamma ^4\,d\mu - 4\int _\varSigma \langle {{\nabla _{(2)} H}, {\nabla \gamma \nabla H}}\rangle _g\gamma ^3\,d\mu . \end{aligned}$$

Combining these identities with (26) we obtain

$$\begin{aligned}&\int _\varSigma |\nabla _{(2)}H|^2\gamma ^4\,d\mu + \frac{1}{4} \int _\varSigma |H|^2|\nabla H|^2\gamma ^4\,d\mu = \int _\varSigma |\Delta H|^2\gamma ^4\,d\mu \\&\quad + \int _\varSigma \nabla _{(2)} H*\nabla H*\nabla \gamma \ \gamma ^3\,d\mu + \int _\varSigma A*A^o*\nabla H*\nabla H\ \gamma ^4\,d\mu , \end{aligned}$$

which upon noting (6), proves (12). \(\square \)

Proof of (14), cf. [13, eqn. (17)]. We shall prove

$$\begin{aligned}&(1-\delta )\int _\varSigma |H|^2 |\nabla A^o|^2\gamma ^4\,d\mu + \left( \frac{1}{2}-2\delta \right) \int _\varSigma |H|^4|A^o|^2\gamma ^4\,d\mu \nonumber \\&\quad \le \left( \frac{1}{2}+3\delta \right) \int _\varSigma |H|^2|\nabla H|^2\gamma ^4\,d\mu \nonumber \\&\qquad + c\int _\varSigma \left( |A^o|^6 + |A^o|^2|\nabla A^o|^2\right) \gamma ^4\,d\mu + c_\gamma ^4c\int _{[\gamma >0]}|A^o|^2\,d\mu , \end{aligned}$$
(27)

for \(\delta >0\), where \(c\) is a constant depending only on \(\delta \). Equation (14) follows from (27) with the choice \(\delta =\frac{1}{8}\). We first begin with the following consequence of Simons’ identity:

$$\begin{aligned} \Delta A^o = S^o(\nabla _{(2)}H) + \frac{1}{2}H^2A^o - |A^o|^2A^o. \end{aligned}$$
(28)

This follows readily from (9),

$$\begin{aligned} \Delta A^o_{ij}&= \Delta A_{ij} - \frac{1}{2}g_{ij}\Delta H\\&= \nabla _{ij}H - \frac{1}{2}g_{ij}\Delta H + HA_i^lA_{lj} - |A|^2A_{ij}\\&= S^o(\nabla _{(2)}H) + HA_i^lA_{lj} - |A|^2A_{ij}\\&= S^o(\nabla _{(2)}H) + 2KA^o_{ij}, \end{aligned}$$

provided we show

$$\begin{aligned} HA_i^jA_{lj} - |A|^2A_{ij} = 2KA^o_{ij}. \end{aligned}$$
(29)

Choosing normal coordinates so that \(A\) is diagonalised (at a point) with \(A=\delta _{ij} k_j\) (no sum over \(j\)), \(H=k_1+k_2\), \(K=k_1k_2\), \(|A|^2=k_2^2+k_1^2\) (at this point) and

$$\begin{aligned} A^o_{ij} = \left\{ \begin{array}{ll} \frac{1}{2}(k_1-k_2),&{}\quad \text{ if } \; i=j=1\\ \frac{1}{2}(k_2-k_1),&{}\quad \text{ if }\;i=j=2\\ 0,&{}\quad \text{ otherwise }, \end{array}\right. \end{aligned}$$

we have

$$\begin{aligned} (i=j=1)\quad HA_1^lA_{l1} - |A|^2A_{11}&= (k_1+k_2)k_1^2 - (k_1^2+k_2^2)k_1\\&= k_1k_2(k_1-k_2) = 2KA^o_{11}\\ (i=j=2)\quad HA_2^lA_{l2} - |A|^2A_{22}&= (k_1+k_2)k_2^2 - (k_1^2+k_2^2)k_2\\&= k_1k_2(k_2-k_1) = 2KA^o_{22}, \end{aligned}$$

and otherwise (29) holds trivially. Therefore (29) is proved. This also proves (28), since

$$\begin{aligned} K = k_1k_2 = \frac{1}{4}(k_1+k_2)^2-\frac{1}{4}(k_1-k_2)^2 = \frac{1}{4}H^2-\frac{1}{2}|A^o|^2. \end{aligned}$$

Now employing the divergence theorem and inserting (28) we compute

$$\begin{aligned} \int _\varSigma |H|^2|\nabla A^o|^2\gamma ^4\,d\mu&= - \int _\varSigma |H|^2\langle {{A^o}, {\Delta A^o}}\rangle _g\gamma ^4\,d\mu \\&- 2\int _\varSigma H\langle {{\nabla A^o}, {\nabla H\, A^o}}\rangle _g\gamma ^4\,d\mu - 4\int _\varSigma |H|^2\langle {{\nabla A^o}{\nabla \gamma \, A^o}}\rangle _g\gamma ^3\,d\mu \\&= - \int _\varSigma |H|^2\langle {{A^o}, {S^o(\nabla _{(2)}H) + \frac{1}{2}|H|^2A^o - |A^o|^2A^o}}\rangle _g\gamma ^4\,d\mu \\&- 2\int _\varSigma H\langle {{\nabla A^o}, {\nabla H\, A^o}}\rangle _g\gamma ^4\,d\mu - 4\int _\varSigma |H|^2\langle {{\nabla A^o}{\nabla \gamma \, A^o}}\rangle _g\gamma ^3\,d\mu \\&= - \int _\varSigma |H|^2\langle {{A^o}, {\nabla _{(2)}H}}\rangle _g\gamma ^4\,d\mu - \frac{1}{2}\int _\varSigma |H|^4|A^o|^2\gamma ^4\,d\mu + \int _\varSigma |H|^2|A^o|^4\gamma ^4\,d\mu \\&- 2\int _\varSigma H\langle {{\nabla A^o}, {\nabla H\, A^o}}\rangle _g\gamma ^4\,d\mu - 4\int _\varSigma |H|^2\langle {{\nabla A^o}{\nabla \gamma \, A^o}}\rangle _g\gamma ^3\,d\mu \\&= \int _\varSigma |H|^2\langle {{\nabla ^* A^o}, {\nabla H}}\rangle _g\gamma ^4\,d\mu + 2\int _\varSigma H\langle {{A^o}, {\nabla H\nabla H}}\rangle _g\gamma ^4\,d\mu \\&- \frac{1}{2}\int _\varSigma |H|^4|A^o|^2\gamma ^4\,d\mu \!+\! \int _\varSigma |H|^2|A^o|^4\gamma ^4\,d\mu \!-\! 2\int _\varSigma H\langle {{\nabla A^o}, {\nabla H\, A^o}}\rangle _g\gamma ^4\,d\mu \\&+ 4\int _\varSigma |H|^2\langle {{A^o}{\nabla \gamma \nabla H}}\rangle _g\gamma ^3\,d\mu - 4\int _\varSigma |H|^2\langle {{\nabla A^o}, {\nabla \gamma \, A^o}}\rangle _g\gamma ^3\,d\mu . \end{aligned}$$

Noting (6), we estimate the right hand side to obtain for \(\delta > 0\)

$$\begin{aligned}&\int _\varSigma |H|^2|\nabla A^o|^2\gamma ^4\,d\mu + \frac{1}{2}\int _\varSigma |H|^4|A^o|^2\gamma ^4\,d\mu \\&\quad = \frac{1}{2}\int _\varSigma |H|^2|\nabla H|^2\gamma ^4\,d\mu + 2\int _\varSigma H\langle {{A^o}, {\nabla H\nabla H}}\rangle _g\gamma ^4\,d\mu \\&\qquad + \int _\varSigma |H|^2|A^o|^4\gamma ^4\,d\mu - 2\int _\varSigma H\langle {{\nabla A^o}, {\nabla H\, A^o}}\rangle _g\gamma ^4\,d\mu \\&\qquad + 4\int _\varSigma |H|^2\langle {{A^o}, {\nabla \gamma \nabla H}}\rangle _g\gamma ^3\,d\mu - 4\int _\varSigma |H|^2\langle {{\nabla A^o}, {\nabla \gamma \, A^o}}\rangle _g\gamma ^3\,d\mu \\&\quad \le \left( \frac{1}{2}+3\delta \right) \int _\varSigma |H|^2|\nabla H|^2\gamma ^4\,d\mu + \frac{1}{\delta }\int _\varSigma |A^o|^2|\nabla H|^2\gamma ^4\,d\mu \\&\qquad + \delta \int _\varSigma |H|^4|A^o|^2\gamma ^4\,d\mu + \frac{1}{4\delta }\int _\varSigma \left( |A^o|^6 + 4|A^o|^2|\nabla A^o|^2\right) \gamma ^4\,d\mu \\&\qquad + \delta \int _\varSigma |H|^2|\nabla A^o|^2\gamma ^4\,d\mu + c_\gamma ^2\frac{8}{\delta }\int _\varSigma |H|^2|A^o|^2\gamma ^2\,d\mu \\&\quad \le \left( \frac{1}{2}+3\delta \right) \int _\varSigma |H|^2|\nabla H|^2\gamma ^4\,d\mu + \delta \int _\varSigma |H|^2|\nabla A^o|^2\gamma ^4\,d\mu \\&\qquad + 2\delta \int _\varSigma |H|^4|A^o|^2\gamma ^4\,d\mu + \frac{1}{4\delta }\int _\varSigma \left( |A^o|^6 + 20|A^o|^2|\nabla A^o|^2\right) \gamma ^4\,d\mu \\&\qquad + c_\gamma ^4\frac{16}{\delta ^3}\int _{[\gamma >0]}|A^o|^2\,d\mu . \end{aligned}$$

Absorbing the second and third terms from the right hand side into the left finishes the proof of (27). \(\square \)

Proof of (16), cf. [13, Prop. 2.4]. Let us first note that Eq. (28) allows us to estimate

$$\begin{aligned}&\int _\varSigma |\Delta A^o|^2\gamma ^4\,d\mu + c\int _\varSigma |A|^2|\nabla A|^2\gamma ^4\,d\mu + \int _\varSigma \nabla _{(2)}A^o*\nabla A^o*\nabla \gamma \ \gamma ^3\,d\mu \\&\quad \le c\int _\varSigma |\nabla _{(2)}H|^2\gamma ^4\,d\mu + \frac{1}{2}\int _\varSigma |\nabla _{(2)}A^o|^2\gamma ^4\,d\mu \\&\qquad + c\int _\varSigma \left( |A|^2|\nabla A|^2 + |A|^4|A^o|^2\right) \gamma ^4\,d\mu + c_\gamma ^2c\int _\varSigma |\nabla A^o|^2\gamma ^2\,d\mu . \end{aligned}$$

Thus (16) will be proved provided we show

$$\begin{aligned}&\int _\varSigma |\nabla _{(2)}A^o|^2\gamma ^4\,d\mu \le \int _\varSigma |\Delta A^o|^2\gamma ^4\,d\mu + c\int _\varSigma |A|^2|\nabla A|^2\gamma ^4\,d\mu \nonumber \\&\quad + \int _\varSigma \nabla _{(2)}A^o*\nabla A^o*\nabla \gamma \ \gamma ^3\,d\mu . \end{aligned}$$
(30)

This again relies upon interchange of covariant derivatives; we shall prove the following identity

$$\begin{aligned} \Delta \nabla A^o = \nabla \Delta A^o + \nabla A^o * A * A . \end{aligned}$$
(31)

Using (10), we compute

$$\begin{aligned} \nabla _{ijk}A^o_{lm}&= \nabla _{ikj}A^o_{lm} + \nabla (A^o*A*A)\nonumber \\&= \nabla _{kij}A^o_{lm} + \nabla A^o*A*A + A^o * \nabla A*A\nonumber \\&= \nabla _{kij}A^o_{lm} + \nabla A^o*A*A, \end{aligned}$$
(32)

where in the last equality we used

$$\begin{aligned} \nabla _i A_{jk} = \nabla _i A^o_{jk} + \frac{1}{2}g_{jk}\nabla _i H = \nabla _i A^o_{jk} + g_{jk}\nabla _p (A^o)_i^p. \end{aligned}$$

Tracing (32) with \(g^{ij}\) gives (31), which testing against \(\nabla A^o\,\gamma ^4\) and using the divergence theorem implies

$$\begin{aligned} \int _\varSigma |\nabla _{(2)}A^o|^2\gamma ^4d\mu&= - \int _\varSigma \langle {{\nabla A^o}, {\Delta \nabla A^o}}\rangle _g\gamma ^4\,d\mu - 4\int _\varSigma \langle {{\nabla \gamma \nabla A^o}, {\nabla _{(2)}A^o}}\rangle _g \gamma ^3\,d\mu \\&= - \int _\varSigma \langle {{\nabla A^o}, {\nabla \Delta A^o}}\rangle _g\gamma ^4\,d\mu - 4\int _\varSigma \langle {{\nabla \gamma \nabla A^o}, {\nabla _{(2)}A^o}}\rangle _g \gamma ^3\,d\mu \\&+ \int _\varSigma \nabla A^o * \nabla A^o * A * A\ \gamma ^4\,d\mu \\&= \int _\varSigma |\Delta A^o|^2\gamma ^4\,d\mu + 4\int _\varSigma \langle {{\nabla A^o}, {\nabla \gamma \Delta A^o}}\rangle _g \gamma ^3\,d\mu \\&- 4 \!\int _\varSigma \langle {{\nabla \gamma \nabla A^o}, {\nabla _{(2)}A^o}}\rangle _g \gamma ^3\,d\mu \!+\! \int _\varSigma \! \nabla A^o * \nabla A^o * A * A\ \gamma ^4\,d\mu \\&\le \int _\varSigma |\Delta A^o|^2\gamma ^4\,d\mu + c\int _\varSigma |A|^2|\nabla A^o|^2\gamma ^4\,d\mu \\&+ \int _\varSigma \nabla _{(2)}A^o*\nabla A^o*\nabla \gamma \ \gamma ^3\,d\mu , \end{aligned}$$

which clearly implies (30). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCoy, J., Wheeler, G. A classification theorem for Helfrich surfaces. Math. Ann. 357, 1485–1508 (2013). https://doi.org/10.1007/s00208-013-0944-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0944-z

Mathematics Subject Classification (2000)

Navigation