Skip to main content
Log in

Exponential decay estimates for singular integral operators

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The following subexponential estimate for commutators is proved

$$\begin{aligned} |\{x\in Q: |[b,T]f(x)|>tM^2f(x)\}|\le c\,e^{-\sqrt{\alpha \, t\Vert b\Vert _{BMO}}}\, |Q|, \qquad t>0. \end{aligned}$$

where \(c\) and \(\alpha \) are absolute constants, \(T\) is a Calderón–Zygmund operator, \(M\) is the Hardy Littlewood maximal function and \(f\) is any function supported on the cube \(Q\subset \mathbb{R }^n\). We also obtain that

$$\begin{aligned} |\{x\in Q: |f(x)-m_f(Q)|>tM_{\lambda _n;Q}^\#(f)(x) \}|\le c\, e^{-\alpha \,t}|Q|,\qquad t>0, \end{aligned}$$

where \(m_f(Q)\) is the median value of \(f\) on the cube \(Q\) and \(M_{\lambda _n;Q}^\#\) is Strömberg’s local sharp maximal function with \(\lambda _n=2^{-n-2}\). As a consequence we derive Karagulyan’s estimate:

$$\begin{aligned} |\{x\in Q: |Tf(x)|> tMf(x)\}|\le c\, e^{-c\, t}\,|Q|\qquad t>0, \end{aligned}$$

from [21] improving Buckley’s theorem [3]. A completely different approach is used based on a combination of “Lerner’s formula” with some special weighted estimates of Coifman–Fefferman type obtained via Rubio de Francia’s algorithm. The method is flexible enough to derive similar estimates for other operators such as multilinear Calderón–Zygmund operators, dyadic and continuous square functions and vector valued extensions of both maximal functions and Calderón–Zygmund operators. In each case, \(M\) will be replaced by a suitable maximal operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, J., Pérez, C.: Estimates with \(A_\infty \) weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8(1), 123–133 (1994)

  2. Richar, J.: Bagby and Douglas S. Kurtz: A rearranged good \(\lambda \) inequality. Trans. Amer. Math. Soc. 293(1), 71–81 (1986)

    MathSciNet  Google Scholar 

  3. Buckley, S.M.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkholder, D.L., Gundy, R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lennart, C.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Citti, G., Grafakos, L., Prez, C., Sarti, A., Zhong, X.: Harmonic and Geometric Analysis: Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel (2013)

    Google Scholar 

  7. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    MathSciNet  MATH  Google Scholar 

  8. David, C.-U., María, M.J., Carlos, P.: Sharp weighted estimates for approximating dyadic operators. Electron. Res. Announc. Math. Sci. 17, 12–19 (2010)

    MathSciNet  MATH  Google Scholar 

  9. David, C.-U., María, M.J., Carlos, P.: Sharp weighted estimates for classical operators. Adv. Math. 229, 408–441 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. José, G.-C., de Francia, R.: Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1985)

    Google Scholar 

  12. Loukas, G.: Classical and modern Fourier analysis. Pearson Education Inc., Upper Saddle River (2004)

    MATH  Google Scholar 

  13. Loukas, G.: Classical Fourier analysis volume 249 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2008)

    Google Scholar 

  14. Loukas, G., Torres, R.H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165(1), 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hytönen, T., Lacey, M.T.: The \({A}_p-{A}_\infty \) inequality for general calderon-zygmund operators. Indiana Univ. Math. J. (to appear). Preprint arXiv:1106.4797

  16. Hytönen, T., Lacey, M.T., Pérez, C.: Non-probabilistic proof of the \({A}_2\) theorem, and sharp weighted bounds for the \(q\)-variation of singular integrals. Bull. Lond. Math. Soc. (to appear). doi:10.1112/blms/bds114

  17. Hytönen, T., Pérez, C.: Sharp weighted bounds involving \({A}_{\infty }\). Anal. PDE (to appear)

  18. Hytönen, T.P.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)

    Article  MATH  Google Scholar 

  19. Jawerth, B., Torchinsky, A.: Local sharp maximal functions. J. Approx. Theory 43(3), 231–270 (1985)

    Google Scholar 

  20. Journé, J.: Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón, volume 994 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1983)

  21. Karagulyan, G.A.: Exponential estimates for the Calderón-Zygmund operator and related problems of Fourier series. Mat. Zametki 71(3), 398–411 (2002)

    Article  MathSciNet  Google Scholar 

  22. Lerner, A.K.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. IMRN, doi:10.1093/imrn/rns145

  23. Lerner, A.K.: On some sharp weighted norm inequalities. J. Funct. Anal. 232(2), 477–494 (2006)

    Google Scholar 

  24. Lerner, A.K.: A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. Lond. Math. Soc. 42(5), 843–856 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lerner, A.K., Ombrosi, S., Pérez, C.: Sharp \(A_1\) bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden. Int. Math. Res. Not. IMRN (6):Art. ID rnm161, 11, (2008)

  26. Lerner, A.K., Sheldy, O., Carlos, P.: \(A_1\) bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden. Math. Res. Lett. 16(1), 149–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lerner, A.K., Sheldy, O., Carlos, P.: Weak type estimates for singular integrals related to a dual problem of Muckenhoupt-Wheeden. J. Fourier Anal. Appl. 15(3), 394–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lerner, A.K., Sheldy, O., Carlos, P., Rodrigo, T.-G.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220(4), 1222–1264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ortiz Caraballo, C.: Conmutadores de integrales singulares y pesos \(A_1\), PhD. Dissertation, Universidad de Sevilla (2011)

  30. Carmen, O.-C.: Quadratic \({A}_1\) bounds for commutators of singular integrals with bmo functions. Indiana Univ. Math. J. 60(6), 2107–2130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carlos, P.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Carlos, P.: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3(6), 743–756 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Carlos, P., Rodrigo, T.-G.: Sharp weighted estimates for vector-valued singular integral operators and commutators. Tohoku Math. J. (2) 55(1), 109–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stein, E.M.: Note on the class \(L\) log \(L\). Studia Math. 32, 305–310 (1969)

    MathSciNet  MATH  Google Scholar 

  35. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  36. Jan-Olov, S.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28(3), 511–544 (1979)

    Article  MathSciNet  Google Scholar 

  37. Wilson, M.: Weighted Littlewood-Paley theory and exponential-square integrability, volume 1924 of Lecture Notes in Mathematics. Springer, Berlin (2008)

Download references

Acknowledgments

C. Pérez is supported by the Spanish Ministry of Science and Innovation grant MTM2009-08934, C. Pérez and E. Rela are also supported by the Junta de Andalucía, grant FQM-4745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel Rela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Caraballo, C., Pérez, C. & Rela, E. Exponential decay estimates for singular integral operators. Math. Ann. 357, 1217–1243 (2013). https://doi.org/10.1007/s00208-013-0940-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0940-3

Mathematics Subject Classification (2000)

Navigation