Skip to main content

Advertisement

Log in

Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that if a metric measure space satisfies the volume doubling condition and the Caffarelli–Kohn–Nirenberg inequality with the same exponent \(n \ge 3\), then it has exactly the \(n\)-dimensional volume growth. As an application, if an \(n\)-dimensional Finsler manifold of non-negative \(n\)-Ricci curvature satisfies the Caffarelli–Kohn–Nirenberg inequality with the sharp constant, then its flag curvature is identically zero. In the particular case of Berwald spaces, such a space is necessarily isometric to a Minkowski space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvino, A., Ferone, V., Lions, P.-L., Trombetti, G.: Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 275–293 (1997)

    Google Scholar 

  2. Aubin, T.: Problèmes isopérimétriques de Sobolev. J. Diff. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bao, D., Chern, S.-S., Shen, Z.: Introduction to Riemann–Finsler geometry. In: Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

  4. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weight. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Chou, K.S., Chu, C.W.: On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. 48(2), 137–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. do Carmo, M.P., Xia, C.: Complete manifolds with non-negative Ricci curvature and the Caffarelli–Kohn–Nirenberg inequalities. Compos. Math. 140, 818–826 (2004)

    Google Scholar 

  7. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  8. Kristály, A.: Anisotropic singular phenomena in the presence of asymmetric Minkowski norms (2012, Preprint)

  9. Lieb, E.H.: Sharp constants in the Hardy–Littlewood and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Diff. Equ. 36, 211–249 (2009)

    Article  MATH  Google Scholar 

  11. Ohta, S.: Splitting theorems for Finsler manifolds of nonnegative Ricci curvature. J. Reine Angew. Math. (2013, to appear). Available at arXiv:1203.0079

  12. Ohta, S., Sturm, K.-T.: Heat flow on Finsler manifolds. Comm. Pure Appl. Math. 62, 1386–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ohta, S., Sturm, K.-T.: Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds (2011, preprint). Available at arXiv:1104.5276

  14. Shen, Z.: Volume comparison and its applications in Riemann–Finsler geometry. Adv. Math. 128, 306–328 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen, Z.: Lectures on Finsler geometry. World Scientific Publishing Co., Singapore (2001)

    Book  MATH  Google Scholar 

  16. Szabó, Z.I.: Positive definite Berwald spaces. Structure theorems on Berwald spaces. Tensor (N.S.) 35, 25–39 (1981)

    Google Scholar 

  17. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van Schaftingen, J.: Anisotropic symmetrization. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 539–565 (2006)

Download references

Acknowledgments

The paper was completed when A. Kristály visited the Department of Mathematics of Kyoto University in October 2012. He is supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0241 and partially by Domus Hungarica. S. Ohta is supported by the Grant-in-Aid for Young Scientists (B) 23740048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohta.

Additional information

Dedicated to Professor Vicenţiu Rădulescu on the occasion of his 55th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristály, A., Ohta, Si. Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications. Math. Ann. 357, 711–726 (2013). https://doi.org/10.1007/s00208-013-0918-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0918-1

Mathematics Subject Classification (2000)

Navigation