Skip to main content
Log in

Gauss–Bonnet–Chern theorem on moduli space

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we prove a Gauss–Bonnet–Chern type theorem in full generality for the Chern–Weil forms of Hodge bundles. That is, the Chern–Weil forms compute the corresponding Chern classes. This settles a long standing problem. Second, we apply the result to Calabi–Yau moduli, and proved the corresponding Gauss–Bonnet–Chern type theorem in the setting of Weil–Petersson geometry. As an application of our results in string theory, we prove that the number of flux vacua of type II string compactified on a Calabi–Yau manifold is finite, and their number is bounded by an intrinsic geometric quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The result is different from that of Griffiths–Schmid, because the negativity of the curvature of a submanifold, instead of the whole classifying space, was proved.

  2. The inequality is a refinement of  [28, (4.12)].

  3. The Hodge metrics are generally referred to the natural Hermitian metrics on Hodge bundles. After [20, 22], the metrics in Definition 5.1 are also called the Hodge metrics or the generalized Hodge metrics, because they have the similar curvature properties as the original ones on Hodge bundles.

  4. It may be more accurate to say that, up to a finite cover, \(\bar{M}\) can be chosen to be a manifold.

  5. During the process, it is possible that some divisors are added. However, along these divisors, the monodromy operators are the identity operator.

  6. Since in this paper we use a large set of notations, for simplicity, we will try to keep them the same as in [4]. Thus we have to sacrifice the uniqueness of the notations. For example, \(\alpha \) is used in \(U=U_\alpha \) and also as the subscripts of the set \(I\), etc. It should be clear from the context.

  7. That is, if \(h_{PH^k}=(h_{PH^k})_{i\bar{j}} dt_i\otimes d\bar{t}_j\), then \(\omega _{PH^k}=\frac{\sqrt{-1}}{2\pi }(h_{PH^k})_{i\bar{j}} dt_i\wedge d\bar{t}_j\).

  8. This is essentially due to [15]. See also [13, page 34].

  9. The metric is equivalent to the partial Hodge metric in [23, Section 4]. But we don’t need this fact here.

References

  1. Ashok, S.K., Douglas, MR.: Counting flux vacua. J. High Energy Phys. (1), 060 (2004). doi:10.1088/1126-6708/2004/01/060 (to appear in print)

  2. Bryant, R.L., Griffiths, P.A.: Some observations on the infinitesimal period re-lations for regular threefolds with trivial canonical bundle, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, pp. 77–102. Birkhauser Boston, Boston (1983)

  3. Cattani, E., Kaplan, A.: Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure. Invent. Math. 67(1), 101–115 (1982). doi:10.1007/BF01393374

    Article  MathSciNet  MATH  Google Scholar 

  4. Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structures. Ann. Math. (2) 123 (3), 457–535. doi:10.2307/1971333 (1986)

  5. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne, P.: La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (French) (1980)

  7. Douglas, M.R., Lu, Z.: Finiteness of volume of moduli spaces. hep-th/0509224 (2005)

  8. Lu, Z., Douglas, M.R.: On the Geometry of Moduli Space of Polarized Calabi-Yau Manifolds. Analytic Geometry of the Bergman Kernel and Related Topics (RIMS Kokyuroku 1487, May, 2006), pp. 55–68. arXiv: math/0603414

  9. Douglas, M.R., Shiftman, B., Zelditch, S.: Critical points and supersymmetric vacua. III. String/M models. Comm. Math. Phys. 265(3), 617–671 (2006). doi:10.1007/s00220-006-0003-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Eguchi, T., Tachikawa, Y.: Distribution of flux vacua around singular points in Calabi–Yau moduli space. J. High Energy Phys. 1, 100 (2006) (to appear in print). doi:10.1088/1126-6708/2006/01/100

  11. Fang, H., Lu, Z.: Generalized Hodge metrics and BCOV torsion on Calabi–Yau moduli. J. Reine Angew. Math. 588, 49–69 (2005). doi:10.1515/crll.2005.2005.588.49

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, H., Lu, Z., Yoshikawa, K.-I.: Analytic torsion for Calabi–Yau threefolds. J. Differ. Geom. 80(2), 175–259 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Griffiths, P., et al.: Topics in transcendental algebraic geometry, Annals of Mathematics Studies vol. 106. Princeton University Press, Princeton (1984)

    Google Scholar 

  14. Griffiths, P., Harris J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994) (Reprint of the 1978 original)

  15. Griffiths, P., Schmid, W.: Locally homogeneous complex manifolds. Acta Math. 123, 253–302 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horne, J.H., Moore, G.: Chaotic coupling constants, Nuclear Phys. B 432(1–2), 109–126 (1994). doi:10.1016/0550-3213(94)90595-9

    Google Scholar 

  17. Kachru, S., Vafa, C.: Exact results for N = 2 compactifications of heterotic strings. Nuclear Phys. B 450(1–2), 69–89 (1995). doi:10.1016/0550-3213(95)00307-E

    Article  MathSciNet  Google Scholar 

  18. Kawamata, Y.: Characterization of abelian varieties. Compos. Math. 43(2), 253–276 (1981)

    MathSciNet  MATH  Google Scholar 

  19. Kollár, J.: Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai: Adv. Stud. Pure Math., vol. 10. North-Holland, Amsterdam 1987, 361–398 (1985)

  20. Lu, Z.: On the geometry of classifying spaces and horizontal slices. Am. J. Math. 121(1), 177–198 (1999)

    Article  MATH  Google Scholar 

  21. Lu, Z.: On the curvature tensor of the Hodge metric of moduli space of polarized Calabi–Yau threefolds. J. Geom. Anal. 11(4), 635–647 (2001). doi:10.1007/BF02930760

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, Z.: On the Hodge metric of the universal deformation space of Calabi–Yau three- folds. J. Geom. Anal. 11(1), 103–118 (2001). doi:10.1007/BF02921956

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, Z., Sun, X.: Weil-Petersson geometry on moduli space of polarized Calabi–Yau manifolds. J. Inst. Math. Jussieu 3(2), 185–229 (2004). doi:10.1017/S1474748004000076

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, Z., Sun, X.: On the Weil-Petersson volume and the first Chern class of the moduli space of Calabi–Yau manifolds. Comm. Math. Phys. 261(2), 297–322 (2006). doi:10.1007/s00220-005-1441-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Morrison, D.R.: Making enumerative predictions by means ofmirror symmetry, Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol.1, pp. 457–482 . Am. Math. Soc., Providence (1997)

  26. Mumford, D.: Hirzebruch’s proportionality theorem in the noncompact case. Invent. Math. 42, 239–272 (1977). doi:10.1007/BF01389790

    Article  MathSciNet  MATH  Google Scholar 

  27. Peters, C.A.M.: Curvature for period domains, Complex geometry and Lie theory (Sundance, UT, 1989). Proc. Sympos. Pure Math., vol. 53, pp. 261–268. Am. Math. Soc., Providence (1991)

  28. Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Steenbrink, J.: Limits ofHodge structures. Invent. Math. 31(3), 229–257 (1975/76)

    Google Scholar 

  30. Strominger, A.: Special geometry. Comm. Math. Phys. 133(1), 163–180 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tian, G.: Smoothness of the universal deformation space of compact Calabi–Yau man-ifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, pp. 629–646. World Scientific Publishing, Singapore (1987)

  32. Tian, G., Yau, S.-T.: Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (San Diego, Calif., 1986): Adv. Ser. Math. Phys., vol. 1, pp. 574–628. World Scientific Publishing, Singapore (1987)

  33. Todorov, A.: Weil-Petersson volumes of the moduli spaces of CY manifolds. Comm. Anal. Geom. 15(2), 407–434 (2007)

    MathSciNet  Google Scholar 

  34. Todorov, A.N.: The Weil-Petersson geometry of the moduli space of \(\text{ SU}(n \ge 3)\) (Calabi-Yau) manifolds. I. Comm. Math. Phys. 126(2), 325–346 (1989)

    Article  MATH  Google Scholar 

  35. Viehweg, E.: Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathe-matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] vol. 30. Springer, Berlin (1995)

  36. Wang, C.-L.: Curvature properties of the Calabi–Yau moduli. Doc. Math. 8, 577–590 (2003)

    Google Scholar 

  37. Yau, S.T.: A general Schwarz lemma for Kahler manifolds. Am. J. Math. 100(1), 197–203 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

During the last four years, we have discussed the topic with many mathematicians and string theorists. We thank them all. The first author particularly thanks J. Kollár and W. Schmid for stimulating discussions during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqin Lu.

Additional information

The first author is supported by the NSF grant DMS-12-06748, and the second author is supported by DOE grant DE-FG02-96ER40959.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Douglas, M.R. Gauss–Bonnet–Chern theorem on moduli space. Math. Ann. 357, 469–511 (2013). https://doi.org/10.1007/s00208-013-0907-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0907-4

Mathematics Subject Classification (2000)

Navigation