Skip to main content
Log in

The \(K\)-theory of free quantum groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study the \(K\)-theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are \(K\)-amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the \(K\)-theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a \(\gamma \)-element and that \(\gamma = 1\). As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj, S., Skandalis, G.: \(C^\ast \)-algèbres de Hopf et théorie de Kasparov équivariante. K Theory 2(6), 683–721 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de \(C^*\)-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4), 425–488 (1993)

    MathSciNet  Google Scholar 

  3. Baaj, S., Vaes, S.: Double crossed products of locally compact quantum groups. J. Inst. Math. Jussieu 4(1), 135–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banica, T.: Théorie des représentations du groupe quantique compact libre O(n). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Banica, T.: Le groupe quantique compact libre U(n). Comm. Math. Phys. 190(1), 143–172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baum, P., Connes, A.: Geometric K-theory for Lie groups and foliations. Enseign. Math. 46(1–2), 3–42 (2000)

    Google Scholar 

  7. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and \(K\)-theory of group \(C^\ast \)-algebras. In: \(C^\ast \)-algebras: 1943–1993 (San Antonio, TX, 1993), vol. 167. Contemporary Mathematics, pp. 240–291. American Mathematical Society, Providence (1994)

  8. Bichon, J., De Rijdt, A., Vaes, S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Comm. Math. Phys. 262(3), 703–728 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blackadar, B.: \(K\)-theory for operator algebras, 2nd edn. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998)

  10. Cuntz, J.: The \(K\)-groups for free products of \(C^{\ast } \)-algebras. In: Proceedings of Symposia in Pure Mathematics on Operator algebras and applications, Part I (Kingston, Ont., 1980), vol. 38, pp. 81–84. American Mathematical Society, Providence (1982)

  11. Cuntz, J.: K-theoretic amenability for discrete groups. J. Reine Angew. Math. 344, 180–195 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Higson, N., Kasparov, G.: E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math. 144(1), 23–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Julg, P., Valette, A.: \(K\)-theoretic amenability for SL\(_{2}({Q}_{p})\), and the action on the associated tree. J. Funct. Anal. 58(2), 194–215 (1984)

    Google Scholar 

  14. Kasparov, G.G., Skandalis, G.: Groups acting on buildings, operator \(K\)-theory, and Novikov’s conjecture. K Theory 4(4), 303–337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kustermans, J., Vainerman, L., Van Daele, A., Woronowicz, S.L.: Locally compact quantum groups. In: Lecture Notes. Conference on Noncommutative Geometry and Quantum groups, Warsaw (2001)

  16. Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33(6), 837–934 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Meyer, R.: Homological algebra in bivariant \(K\)-theory and other triangulated categories. II. Tbil. Math. J. 1, 165–210 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Meyer, R., Nest, R.: The Baum–Connes conjecture via localisation of categories. Topology 45(2), 209–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer, R., Nest, R.: Homological algebra in bivariant \(K\)-theory and other triangulated categories. I. In: Triangulated categories. London Mathematical Society Lecture Note Series, vol. 375, pp. 236–289. Cambridge Univ. Press, Cambridge (2010)

  21. Nest, R., Voigt, C.: Equivariant Poincaré duality for quantum group actions. J. Funct. Anal. 258(5), 1466–1503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oyono-Oyono, H.: Baum–Connes conjecture and group actions on trees. K Theory 24(2), 115–134 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pimsner, M., Voiculescu, D.: Exact sequences for \(K\)-groups and Ext-groups of certain cross-product \(C^{\ast } \)-algebras. J. Oper. Theory 4(1), 93–118 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Pimsner, M., Voiculescu, D.: \(K\)-groups of reduced crossed products by free groups. J. Oper. Theory 8(1), 131–156 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Tu, J.-L.: The Baum–Connes conjecture and discrete group actions on trees. K Theory 17(4), 303–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vaes, S.: A new approach to induction and imprimitivity results. J. Funct. Anal. 229(2), 317–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vaes, S., Vainerman, L.: On low-dimensional locally compact quantum groups. In: Locally Compact Quantum Groups and Groupoids (Strasbourg, 2002). IRMA Lectures in Mathematics and Theoretical Physics, vol. 2, pp. 127–187. De Gruyter, Berlin (2003)

  28. Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Daele, A., Wang, S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996)

    Article  MATH  Google Scholar 

  30. Vergnioux, R.: \(K\)-amenability for amalgamated free products of amenable discrete quantum groups. J. Funct. Anal. 212(1), 206–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vergnioux, R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Voiculescu, D.: Symmetries of some reduced free product \(C^\ast \)-algebras. In: Operator Algebras and their Connections with Topology and Ergodic Theory (Buşteni, 1983). Lecture Notes in Mathematics, vol. 1132, pp. 556–588. Springer, Berlin (1985)

  33. Voigt, C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, S.: Free products of compact quantum groups. Comm. Math. Phys. 167(3), 671–692 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, S.: Structure and isomorphism classification of compact quantum groups \(A_u(Q)\) and \(B_u(Q)\). J. Oper. Theory 48(3), 573–583 (2002)

    MATH  Google Scholar 

  36. Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)

Download references

Acknowledgments

We would like to thank G. Skandalis for helpful comments. The first named author was supported by ANR grant ANR-09-BLAN-0059 AGORA. The second named author was supported by DFG (SFB 878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Voigt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergnioux, R., Voigt, C. The \(K\)-theory of free quantum groups. Math. Ann. 357, 355–400 (2013). https://doi.org/10.1007/s00208-013-0902-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0902-9

Mathematics Subject Classification (2000)

Navigation