Skip to main content
Log in

The Calabi flow on Kähler Surfaces with bounded Sobolev constant (I)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the formation of singularities along the Calabi flow by assuming the uniformly bounded Sobolev constants. On Kähler surfaces we prove that if curvature tensor is not uniformly bounded, then one can form a singular model called deepest bubble; such deepest bubble has to be a scalar flat ALE Kähler metric. In certain Kähler classes on toric Fano surfaces, the Sobolev constants are a priori bounded along the Calabi flow with small Calabi energy. We can also show in certain cases no deepest bubble can form along the flow. It follows that the curvature tensor is uniformly bounded and the flow exists for all time and converges to an extremal metric subsequently. To illustrate our results more clearly, we focus on an example on \({\mathbb{CP}^2}\) blown up three points at generic position. Our result also implies existence of constant scalar curvature metrics on \({\mathbb{CP}^2}\) blown up three points at generic position in the Kähler classes where the exceptional divisors have the same area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.: Orbifold compactness for spaces of Riemannian metrics and applications. Math. Ann. 331(4), 739–778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apostolov V., Calderbank D., Gauduchon P., Tonnesen-Friedman C.: Hamiltonian 2-forms in Kähler geometry, III Extremal metrics and stability. Invent. Math. 173(3), 547–601 (2008) arXiv:math/0511118

    Article  MathSciNet  MATH  Google Scholar 

  3. Arezzo C., Pacard F.: Blowing up and desingularizing constant scalar curvature Kähler manifolds. Acta Math. 196(2), 179–228 (2006) arXiv:math/0411522

    Article  MathSciNet  MATH  Google Scholar 

  4. Calabi E.: Extremal Kähler metric. In: Yau, S.T. (eds) Seminar of Differential Geometry, Annals of Mathematics Studies, vol. 102, pp. 259–290. Princeton University Press, Princeton (1982)

    Google Scholar 

  5. Bunch, R.S., Donaldson, S.K.: Numerical approximations to extremal metrics on toric surfaces. arXiv:0803.0987

  6. Calabi E.: Extremal Kähler metric, II. In: Chavel, I., Farkas, H.M. (eds) Differential Geometry and Complex Analysis., pp. 95–114. Springer, Berlin (1985)

    Chapter  Google Scholar 

  7. Calabi E., Chen X.: The Space of Kähler metrics II. J. Differ. Geom. 61(2), 173–193 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Calderbank D., Singer M.: Toric self-dual Einstein metrics on compact orbifolds. Duke Math. J. 133(2), 237–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen X.: Calabi flow in Riemann surfaces revisited. IMRN 6, 275–297 (2001)

    Article  Google Scholar 

  10. Chen X.: Space of Kähler metrics III—on the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175(3), 453–503 (2009) arXiv:math/0606228

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen X., He W.: On the Calabi flow. Am. J. Math. 130(2), 539–570 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen X., He W.: The Calabi flow on toric Fano surfaces. Math. Res. Lett. 17(2), 231–241 (2010) arXiv:0807.3984

    MathSciNet  MATH  Google Scholar 

  13. Chen X., LeBrun C., Weber B.: On Einstein Conformally Kähler Metrics. J. Am. Math. Soc. 21(4), 1137–1168 (2008) arXiv.0715.0710

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X., Tian, G.: Geometry of Kähler Metrics and Foliations by Holomorphic Discs. Publ. Math. Inst. Hautes t́udes Sci. No. 107, pp. 1–107 (2008). arXiv:math/0507148

  15. Chen, X., Weber, B.: Moduli Spaces of critical Riemannian Metrics with \({L^{\frac{n}{2}} }\) norm curvature bounds. Preprint (2006)

  16. Chrusciél P.T.: Semi-global existence and convergence of solutions of the Robison-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137, 289–313 (1991)

    Article  MATH  Google Scholar 

  17. Donaldson, S.: Conjectures in Kähler geometry. Strings and Geometry, pp. 71–78, Clay Math. Proc., vol. 3, Amer. Math. Soc., Providence (2004)

  18. Donaldson S.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Donaldson S.: Extremal metrics on toric surfaces, I. J. Differ. Geom. 79(3), 389–432 (2008) arXiv:math/0612120

    MathSciNet  MATH  Google Scholar 

  20. Donaldson S.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Donaldson, S.: Some numerical results in complex differential geometry. arXiv:math/0512625

  22. Fine J.: Constant scalar curvature Kähler metrics on fibred complex surfaces. J. Differ. Geom. 68(3), 397–432 (2004)

    MATH  Google Scholar 

  23. Futaki A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73(3), 437–443 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Futaki A., Mabuchi T.: Bilinear forms and extremal Kähler vector fields associated with Kähler classes. Math. Ann. 301(2), 199–210 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2) (1982)

  26. Hamilton R.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117(3), 545–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Joyce D.: Explicit construction of self-dual 4-manifolds. Duke Math. J. 77(3), 519–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kronheimer P.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Kronheimer P.: A Torelli-type theorem for gravitational instantons. J. Differ. Geom. 29(3), 685–697 (1989)

    MathSciNet  MATH  Google Scholar 

  30. LeBrun C.: Twistors, Kähler manifolds, and bimeromorphic geometry I. J. Am. Math. Soc. 5(2), 289–316 (1992)

    MathSciNet  MATH  Google Scholar 

  31. LeBrun, C.: Explicit self-dual metrics on CP2# · · · #CP2. J. Differ. Geom. 34(1), 223–253 (1991)

    Google Scholar 

  32. Li P., Tam L.: Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 35(2), 359–383 (1992)

    MathSciNet  MATH  Google Scholar 

  33. Mabuchi T.: Stability of extremal Kähler manifolds. Osaka J. Math. 41(3), 563–582 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Morrow J., Kodaira K.: Complex manifolds. Holt Rinehart and Winston Inc, New York (1971)

    MATH  Google Scholar 

  35. Siu Y.T.: The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. Math. (2) 127(3), 585–627 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Struwe M.: Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 247–274 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Székelyhidi G.: Extremal metrics and K-stability. Bull. Lond. Math. Soc. 39(1), 76–84 (2007) arXiv:math/0410401

    Article  MathSciNet  MATH  Google Scholar 

  38. Székelyhidi G.: The Calabi functional on a ruled surface. Ann. Sci. c. Norm. Supér. (4) 42(5), 837–856 (2009) arXiv:math/0703562

    MATH  Google Scholar 

  39. Tian G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian G., Viaclovsky J.: Moduli spaces of critical metrics in dimension four. Adv. Math. 196, 346–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian G., Yau S.T.: Kähler–Einstein metrics on complex surfaces with C 1 > 0. Commun. Math. Phys. 112(1), 175–203 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tosatti V., Weinkove B.: The Calabi flow with small initial energy. Math. Res. Lett. 14(6), 1033–1039 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. arXiv:0707.2424

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxiong Chen.

Additional information

X. Chen is partially supported by NSF. W. He is partially supported by a NSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., He, W. The Calabi flow on Kähler Surfaces with bounded Sobolev constant (I). Math. Ann. 354, 227–261 (2012). https://doi.org/10.1007/s00208-011-0723-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0723-7

Keywords

Navigation