Skip to main content
Log in

Intertwining the geodesic flow and the Schrödinger group on hyperbolic surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct an explicit intertwining operator \({\mathcal L}\) between the Schrödinger group \({e^{it \frac\triangle2}}\) and the geodesic flow on certain Hilbert spaces of symbols on the cotangent bundle T*X Γ of a compact hyperbolic surface X Γ = Γ\D. We also define Γ-invariant eigendistributions of the geodesic flow \({PS_{j, k, \nu_j,-\nu_k}}\) (Patterson-Sullivan distributions) out of pairs of \({\triangle}\) -eigenfunctions, generalizing the diagonal case j = k treated in Anantharaman and Zelditch (Ann. Henri Poincaré 8(2):361–426, 2007). The operator \({\mathcal L}\) maps \({PS_{j, k, \nu_j,-\nu_k}}\) to the Wigner distribution \({W^{\Gamma}_{j,k}}\) studied in quantum chaos. We define Hilbert spaces \({\mathcal H_{PS}}\) (whose dual is spanned by {\({PS_{j, k, \nu_j,-\nu_k}}\)}), resp. \({\mathcal H_W}\) (whose dual is spanned by \({\{W^{\Gamma}_{j,k}\}}\)), and show that \({\mathcal L}\) is a unitary isomorphism from \({\mathcal H_{W} \to \mathcal H_{PS}.}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Annales Inst. Fourier 57(6), 2465–2523 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anantharaman N., Zelditch S.: Quantum ergodicity and Patterson-Sullivan distributions. Ann. Henri Poincaré 8(2), 361–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baladi V.: Periodic orbits and dynamical spectra. Ergodic Theory Dyn. Syst. 18(2), 255–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baladi V., Tsuji M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier (Grenoble) 57(1), 127–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein J., Reznikov A.: Analytic continuation of representations and estimates of automorphic forms. Ann. Math. 150, 329–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernstein, J., Reznikov, A.: Estimates of automorphic functions. Mosc. Math. J. 4(1), 19–37, 310 (2004)

    Google Scholar 

  7. Bismut, J.M.: The hypoelliptic laplacian and orbital integrals. Preprint (2009)

  8. Blank M., Keller G., Liverani C.: Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15(6), 1905–1973 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Butterley O., Liverani C.: Smooth Anosov flows: correlation spectra and stability. J. Modern Dyn. 1(2), 301–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deitmar, A.: Invariant triple products. Int. J. Math. Math. Sci. art ID 48274 (2006)

  11. Eguchi M.: The Fourier transform of the Schwartz space on a semisimple Lie group. Hiroshima Math. J. 4, 133–209 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Eguchi M.: Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces. J. Funct. Anal. 34(2), 167–216 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faure F., Roy N., Sjöstrand J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feingold M., Peres A.: Distribution of matrix elements of chaotic systems. Phys. Rev. A (3) 34(1), 591–595 (1986)

    Article  MathSciNet  Google Scholar 

  15. Folland G.B.: Harmonic Analysis in Phase Space. Ann. Math. Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  16. Gouëzel S., Liverani C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dyn. Syst. 26(1), 189–217 (2006)

    Article  MATH  Google Scholar 

  17. Guillemin V.: Lectures on spectral theory of elliptic operators. Duke Math. J. 44(3), 485–517 (1977)

    Article  MathSciNet  Google Scholar 

  18. Hansen, S., Hilgert, J., Schröder, M.: Patterson–Sullivan distributions in higher rank, arXiv:1105.5788

  19. Harish-Chandra : Discrete series for semisimple Lie groups: II. Explicit determination of the characters. Acta Math. 116, 1–111 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helgason, S.: Topics in harmonic analysis on homogeneous spaces. In: Progress in Mathematics, vol. 13. Birkhäuser, Boston (1981)

  21. Helgason, S.: Groups and geometric analysis. In: Integral Geometry, Invariant Differential Operators, and Spherical Functions. Corrected reprint of the 1984 original. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000)

  22. Hörmander, L.: The Analysis of Linear Partical Differential Operators, vol. I. Distribution Theory and Fourier analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256. Springer, Berlin (1990)

  23. Hörmander L.: The Analysis of Linear Partial Differential Operators, vol. III. Pseudo-Differential Operators. Classics in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  24. Lang S.: SL 2(R). Reprint of the 1975 edition. Graduate Texts in Mathematics, vol. 105. Springer, New York (1985)

    Google Scholar 

  25. Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Preprint (2005)

  26. Luo W., Sarnak P.: Quantum variance for Hecke eigenforms, Annales Scient. de l’École Norm. Sup. 37, 769–799 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Mayer D.M.: The thermodynamic formalism approach to Selberg’s zeta function for PSL(2, Z). Bull. Am. Math. Soc. (N.S.) 25(1), 55–60 (1991)

    Article  MATH  Google Scholar 

  28. Miller S.D., Schmid W.: Automorphic distributions, L-functions, and Voronoi summation for GL(3). Ann. Math. (2) 164(2), 423–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miller, S.D., Schmid, W.: The Rankin-Selberg method for automorphic distributions. In: Representation Theory and Automorphic Forms, pp. 111–150. Progr. Math., vol. 255. Birkhäuser Boston, Boston (2008)

  30. Nicholls, P.J.: The Ergodic Theory of Discrete Groups. London Math. Soc. Lect. Notes Series, vol. 143. Cambridge University Press, Cambridge

  31. Otal, J.P.: Sur les fonctions propres du laplacien du disque hyperbolique. (French. English, French summary) [About eigenfunctions of the laplacian on the hyperbolic disc]. C. R. Acad. Sci. Paris Sér. I Math. 327(2), 161–166 (1998)

  32. Pollicott, M.: Formulae for residues of dynamical zeta functions. http://www.warwick.ac.uk/~masdbl/preprints.html

  33. Pollicott M.: Some applications of thermodynamic formalism to manifolds with constant negative curvature. Adv. Math. 85(2), 161–192 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruelle D.: Resonances for axiom A flows. J. Differ. Geom. 25(1), 99–116 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Rugh H.H.: The correlation spectrum for hyperbolic analytic maps. Nonlinearity 5(6), 1237–1263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rugh H.H.: Generalized Fredholm determinants and Selberg zeta functions for axiom A dynamical systems. Ergodic Theory Dyn. Syst. 16(4), 805–819 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schröder, M.: Patterson-Sullivan distributions for symmetric spaces of the noncompact type. PhD thesis. http://ubdok.uni-paderborn.de/servlets/DocumentServlet?id=12308

  38. Silberman, L., Venkatesh, A.: On quantum unique ergodicity for locally symmetric spaces I. Geom. Funct. Anal. 17(3), 960–998 (2007). math.RT/0407413

    Google Scholar 

  39. Silberman, L., Venkatesh, A.: Entropy bounds for Hecke eigenfunctions on division algebras. GAFA (to appear)

  40. Wolpert S.A.: Semiclassical limits for the hyperbolic plane. Duke Math. J. 108(3), 449–509 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zelditch S.: Quantum transition amplitudes for ergodic and for completely integrable systems. J. Funct. Anal. 94(2), 415–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zelditch S.: Pseudodifferential analysis on hyperbolic surfaces. J. Funct. Anal. 68(1), 72–105 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zelditch, S.: Patterson-Sullivan distributions and invariant trilinear functionals. (in preparation)

  45. Zhao, P.: Quantum variance of Maass-Hecke cusp forms. PhD Dissertation, Ohio State (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Zelditch.

Additional information

Research partially supported by NSF grant DMS-0904252. N. Anantharaman wishes to acknowledge the support of Agence Nationale de la Recherche, under the grants ANR-09-JCJC-0099-01 and ANR-07-BLAN-0361.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anantharaman, N., Zelditch, S. Intertwining the geodesic flow and the Schrödinger group on hyperbolic surfaces. Math. Ann. 353, 1103–1156 (2012). https://doi.org/10.1007/s00208-011-0708-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0708-6

Keywords

Navigation