Skip to main content
Log in

On the cancellation problem

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let k be an algebraically closed field. For every n ≥ 8 we give examples of Zariski open, dense, affine subsets of the affine space A n(k) which do not have the cancellation property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhyankar S.S., Moh T.T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)

    MATH  MathSciNet  Google Scholar 

  2. Ax J.: Injective endomorphisms of varieties and schemes. Pacif. J. Math. 31, 1–7 (1969)

    MATH  MathSciNet  Google Scholar 

  3. Crachiola A.: On automorphisms of Danielewski surfaces. J. Algebraic Geom. 15, 111–132 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Danielewski, W.: On a cancellation problem and automorphism groups of affine algebraic varieties, Warsaw (preprint) (1989)

  5. Dryło R.: Non uniruledness and the cancellation problem II. Ann. Polon. Math. 92, 41–48 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dubouloz A.: Additive group actions on Danielewski varieties and the cancellation problem. Math. Z. 255, 77–93 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fieseler K.: On complex affine surfaces with \({\mathbb {C}_+}\) actions. Comment. Math. Helvetici 69, 5–27 (1989)

    Article  MathSciNet  Google Scholar 

  8. Finston D., Maubach S.: The automorphism group of certain factorial threefolds and a cancellation problem. Israel J. Math. 163, 369–381 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fujita T.: On Zariski problem. Proc. Jpn. Acad. 55, 106–110 (1979)

    Article  MATH  Google Scholar 

  10. Jelonek Z.: Testing sets for properness of polynomial mappings. Math. Ann. 315, 1–35 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lam T.Y.: Serre Conjecture. Springer, Berlin (1978)

    MATH  Google Scholar 

  12. Lang S.: Introduction to Complex Hyperbolic Spaces. Springer, New York (1987)

    MATH  Google Scholar 

  13. Miyanishi M., Sugie T.: Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20, 11–42 (1980)

    MATH  MathSciNet  Google Scholar 

  14. Raynaud M.: Modules projectifs universels. Invent. Math. 6, 1–26 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stasica A.: Geometry of the Jelonek set. J. Pure Appl. Algebra 198, 317–327 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Suzuki M.: Proprietes topologiques des polynomes de deux variables complexes, et automorphismes algebraiques de l’espace \({\mathbb{C}^2}\) . J. Math. Soc. Jpn. 26, 241–257 (1974)

    Article  MATH  Google Scholar 

  17. Swan, R.G.: Vector bundles, projective modules and the K-theory of spheres. In: Algebraic Topology and Algebraic K-Theory (Princeton, N.J., 1983). Annals of Mathematical Studies, vol. 113, pp. 432–522 (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Jelonek.

Additional information

Dedicated to Professor Mikhail Zaidenberg.

The author was partially supported by the grant of Polish Ministry of Science, 2006–2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelonek, Z. On the cancellation problem. Math. Ann. 344, 769–778 (2009). https://doi.org/10.1007/s00208-008-0326-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0326-0

Mathematics Subject Classification (2000)

Navigation