Skip to main content
Log in

Toric anti-self-dual Einstein metrics via complex geometry

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Using the twistor correspondence, we give a classification of toric anti-self-dual Einstein metrics: each such metric is essentially determined by an odd holomorphic function. This explains how the Einstein metrics fit into the classification of general toric anti-self-dual metrics given in an earlier paper (Donaldson and Fine in Math Ann 336(2):281–309, 2006). The results complement the work of Calderbank–Pedersen (J Differential Geom 60(3):485–521, 2002), who describe where the Einstein metrics appear amongst the Joyce spaces, leading to a different classification. Taking the twistor transform of our result gives a new proof of their theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978). Translated from the Russian by K. Vogtmann and A. Weinstein, Graduate Texts in Mathematics, pp. 60

  2. Atiyah M.F., Hitchin N.J. and Singer I.M. (1978). Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A 362(1711): 425–461

    MATH  MathSciNet  Google Scholar 

  3. Besse A.L. (1987). Einstein Manifolds, vol. 10.Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin

    Google Scholar 

  4. Calderbank D.M.J. and Pedersen H. (2000). Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics. Ann. Inst. Fourier (Grenoble) 50(3): 921–963

    MATH  MathSciNet  Google Scholar 

  5. Calderbank D.M.J. and Pedersen H. (2002). Selfdual Einstein metrics with torus symmetry. J. Differential Geom. 60(3): 485–521

    MATH  MathSciNet  Google Scholar 

  6. Donaldson S.K. and Fine J. (2006). Toric anti-self-dual 4-manifolds via complex geometry. Math. Ann. 336(2): 281–309

    Article  MATH  MathSciNet  Google Scholar 

  7. Gibbons G.W. and Hawking S.W. (1978). Gravitational multi-instantons. Phys. Lett. B 78: 430–432

    Article  Google Scholar 

  8. Hitchin N.J. (1980). Linear field equations on self-dual spaces. Proc. R. Soc. Lond. Ser. A 370(1741): 173–191

    Article  MATH  MathSciNet  Google Scholar 

  9. Hitchin, N.J.: Complex manifolds and Einstein’s equations. In: Twistor Geometry and Nonlinear Systems (Primorsko, 1980). Lecture Notes in Mathematics, vol. 970. Springer, Berlin, pp. 73–99 (1982)

  10. Jones P.E. and Tod K.P. (1985). Minitwistor spaces and Einstein-Weyl spaces. Class. Quantum Gravity 2(4): 565–577

    Article  MATH  MathSciNet  Google Scholar 

  11. Joyce D.D. (1995). Explicit construction of self-dual 4-manifolds. Duke Math. J. 77(3): 519–552

    Article  MATH  MathSciNet  Google Scholar 

  12. LeBrun C. (1988). Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118(4): 591–596

    Article  MATH  MathSciNet  Google Scholar 

  13. LeBrun C. (1991). Explicit self-dual metrics on CP2#...#CP2. J. Differential Geom. 34(1): 223–253

    MATH  MathSciNet  Google Scholar 

  14. LeBrun, C.: Self-dual manifolds and hyperbolic geometry. In: Einstein Metrics and Yang-Mills Connections (Sanda, 1990). Lecture Notes in Pure and Applied Mathematics, vol. 145. Dekker, New York, pp. 99–131 (1993)

  15. LeBrun C. (1995). Fano manifolds, contact structures and quaternionic geometry. Int. J. Math. 6(3): 419–437

    Article  MATH  MathSciNet  Google Scholar 

  16. Pontecorvo M. (1992). On twistor spaces of anti-self-dual Hermitian surfaces. Trans. Am. Math. Soc. 331(2): 653–661

    Article  MATH  MathSciNet  Google Scholar 

  17. Tod K.P. (1997) The SU(∞)-Toda field equation and special four-dimensional metrics. In: Geometry and Physics (Aarhus, 1995). Lecture Notes in Pure and Applied Mathematics, vol. 184. Dekker, New York, pp. 307–312 (1997)

  18. Ward R.S. (1980). Self-dual space-times with cosmological constant. Commun. Math. Phys. 78(1): 1–17

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Fine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fine, J. Toric anti-self-dual Einstein metrics via complex geometry. Math. Ann. 340, 143–157 (2008). https://doi.org/10.1007/s00208-007-0141-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0141-z

Keywords

Navigation