Skip to main content
Log in

Existence of solutions of the very fast diffusion equation in bounded and unbounded domain

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove the existence of a unique solution of the following Neumann problem \(u_t = (\phi_m(u))_{xx}\), u > 0, in (a, b) × (0, T), u(x, 0) = u 0(x) ≥ 0 in (a, b), \((\phi_m(u))_x(a,t) = g(t)\) and \((\phi_m(u))_x(b,t)=-f(t) \forall 0 < t < T\), where \(\phi_m(u) = u^m/m\) if m < 0, \(\phi_m(u) = \log u\) if m = 0, and \(T = \sup\{t' > 0: \int_{-a}^bu_0dx > \int_0^{t'}(f+g)\,dt\}\) m≤ 0, \(0 \le f, g \in L_{loc}^{\infty}([0,\infty))\), \(0\le u_0\in L^{\infty}(a,b)\) and the case −1 < m ≤ 0, \(f, g \in L_{loc}^{\infty}([0,\infty))\), \(0 \le u_0 \in L^p(a,b)\) for some constant p > 1 − m. We also obtain a similar result in higher dimensions. As a corollary we will give a new proof of a result of A. Rodriguez and J.L. Vazquez on the existence of infinitely many finite mass solutions of the above equation in \(\mathbb{R} \times (0,T)\) for any −1 < m ≤ 0. We also obtain the exact decay rate of the solution at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J.R. (1991). Local existence and uniqueness of solutions of degenerate parabolic equation. Comm. P.D.E. 16: 105–143

    Article  MATH  Google Scholar 

  2. Aronson D.G. (1986). The porous medium equation, CIME Lectures, in Some problems in Nonlinear Diffusion, Lecture Notes in Mathematics 1224. Springer, New York

    Google Scholar 

  3. Aronson D.G., Bénilan P. (1979). Régularité des solutions de l’équation des milieux poreux dans R N. C. R. Acad. Sc. Paris, Série A, t. 288: 103–105

    MATH  Google Scholar 

  4. Dahlberg B.E.J., Kenig C. (1986). Non-negative solutions of generalized porous medium equations. Revista Matemática Iberoamericana 2: 267–305

    MATH  MathSciNet  Google Scholar 

  5. Dahlberg B.E.J., Kenig C. (1988). Non-negative solutions to fast diffusions. Revista Matemática Iberoamericana 4: 11–29

    MATH  MathSciNet  Google Scholar 

  6. Davis S.H., Dibenedetto E., Diller D.J. (1996). Some a priori estimates for a singular evolution equation arising in thin-film dynamics. SIAM J. Math. Anal. 27(3): 638–660

    Article  MATH  MathSciNet  Google Scholar 

  7. Dibenedetto, E., Diller, D.J.: About a singular parabolic equation arising in thin film dynamics and in the Ricci flow for complete \(\mathbb{R}^2\). In: Marcellini, P., Giorgio, G. Talenti, Vesentini, E. (eds.) Partial differential equations and applications, Lecture Notes in Pure and Applied Mathematics, vol. 177, pp. 103–119, Dekker, New York (1996)

    Google Scholar 

  8. Daskalopoulos P., Del Pino M.A. (1995). On a singular diffusion equation. Comm. Anal. Geometry 3(3): 523–542

    MATH  MathSciNet  Google Scholar 

  9. Daskalopoulos P., Del Pino M.A. (1997). On nonlinear parabolic equations of very fast diffusion. Arch Rational Mech. Anal. 137: 363–380

    Article  MATH  MathSciNet  Google Scholar 

  10. Esteban J.R., Rodriguez A., Vazquez J.L. (1988). A nonlinear heat equation with singular diffusivity. Commun. P.D.E. 13(8): 985–1039

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans L.C., Spruck J. (1991). Motion of level sets by mean curvature I. J. Differ. Geometry 33(3): 635–681

    MATH  MathSciNet  Google Scholar 

  12. Evans L.C., Spruck J. (1992). Motion of level sets by mean curvature II. Trans. Amer. Math. Soc. 330(1): 321–332

    Article  MATH  MathSciNet  Google Scholar 

  13. Folland G.B. (1976). Introduction to partial differential equations, Mathematical notes series 17. Princeton University Press, Princeton

    Google Scholar 

  14. Giga Y., Goto S. (1992). Motion of hypersurfaces and geometric equations. J. Math. Soc. Jpn. 44: 99–111

    Article  MATH  MathSciNet  Google Scholar 

  15. Giga Y., Yamaguchi K. (1993). On a lower bound for the extinction time of surfaces moved by mean curvature. Cal. Var. 1: 413–428

    Google Scholar 

  16. Hsu S.Y. (2003). Asymptotic behaviour of solution of the equation u t  = Δlog u near the extinction time. Adv. Differ. Eqn. 8(2): 161–187

    MATH  Google Scholar 

  17. Hsu S.Y. (2001). Global existence and uniqueness of solutions of the Ricci flow equation. Differ. Integral Eqn. 14(3): 305–320

    MATH  Google Scholar 

  18. Hsu S.Y. (2001). Large time behaviour of solutions of the Ricci flow equation on R 2. Pac. J. Math. 197(1): 25–41

    Article  MATH  Google Scholar 

  19. Hsu S.Y. (2003). Uniqueness of solutions of a singular diffusion equation. Differ. Integral Eqn. 16(2): 181–200

    MATH  Google Scholar 

  20. Hsu S.Y. (2002). Dynamics near extinction time of a singular diffusion equation. Math. Annalen 323(2): 281–318

    Article  MATH  Google Scholar 

  21. Hui, K.M.: Singular limit of solutions of the equation \(u_t=\Delta (\frac{u^m}{m})\) as m → 0. Pac. J. Math. 187(2), 297–316 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Hui K.M. (1999). Existence of solutions of the equation u t  = Δlog u. Nonlinear Anal. TMA 37: 875–914

    Article  MathSciNet  Google Scholar 

  23. Hui K.M. (2001). Asymptotic behaviour of solutions of u t  = Δlog u in a bounded domain. Differ. Integral Eqn. 14(2): 175–188

    MATH  MathSciNet  Google Scholar 

  24. Hui, K.M.: Singular limit of solutions of the very fast diffusion equation (preprint)

  25. Kato T. (1973). Schrödinger operators with singular potentials. Israel J. Math. 13: 135–148

    Google Scholar 

  26. Kurtz T.G. (1973). Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics. Trans. Amer. Math. Soc. 186: 259–272

    Article  MathSciNet  Google Scholar 

  27. Ladyzenskaya, O.A., Solonnikov, V.A., Uraltceva, N.N.: Linear and quasilinear equations of parabolic type Transl. Math. Mono. vol 23, Amer. Math. Soc. Providence, R.I. (1968)

  28. Lions P.L., Toscani G. (1997). Diffusive limit for finite velocity Boltzmann kinetic models. Revista Matematica Iberoamericana 13(3): 473–513

    MATH  MathSciNet  Google Scholar 

  29. Peletier, L.A.: The porous medium equation in applications of nonlinear analysis in the physical sciences. In: Amann, H., Bazley, N., Kirchgassner, K. (eds) Pitman, Boston (1981)

  30. Rosen G. (1979). Nonlinear heat conduction in solid H 2. Phys. Rev. B 19: 2398–2399

    Article  Google Scholar 

  31. Rodriguez A., Vazquez J.L. (1990). A well posed problem in singular Fickian diffusion. Arch Rational Mech. Anal. 110: 141–163

    Article  MATH  MathSciNet  Google Scholar 

  32. Soner H.M., Souganidis P.E. (1993). Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. P.D.E. 18: 859–894

    Article  MATH  MathSciNet  Google Scholar 

  33. Vazquez, J.L.: Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures Appl. 503–526 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Ming Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, K.M. Existence of solutions of the very fast diffusion equation in bounded and unbounded domain. Math. Ann. 339, 395–443 (2007). https://doi.org/10.1007/s00208-007-0119-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0119-x

Mathematics Subject Classification (1991)

Navigation